European Journal of Interdisciplinary Research and Development

Volume-22 December 2023

Website: www.ejird.journalspark.org ISSN (E): 2720-5746

ПРИМЕНЯЕМЫЕ ТОПЛИВО ДЛЯ ГАЗОТУРБИННЫХ ДВИГАТЕЛЕЙ В ГРАЖДАНСКОЙ АВИАЦИИ

Тилавалдиев Бахтияр Тилавалдивиевич старший преподаватель, Ферганский политехнический институт, Республика Узбекистан, г. Фергана

Аннотация

В данной статье рассмотрены вопросы по анализу получения в производстве авиационного топлива TC-1 и PT, Газового топлива улучшение противоизносных свойств с добавлением присадок и применение их в газотурбинных двигателях гражданской авиации.

Ключевые слова: гражданская авиация, реактивное топливо, взаимозаменяемость, фракция, плотность, температура, кипения, углерод, сера, парафин, смола, перегонка, гидроочистка, нефть, газовое топливо, пропан, бутан, пентан.

Введение

Нефтеперерабатывающая промышленность вырабатывает для гражданской авиации две марки реактивного топлива - ТС-1 и РТ, которые являются взаимозаменяемыми. ТС-1 является прямогонной лигроино керосиновой фракцией, полученной из сернистых нефтей, выкипающей в интервале температур от 150 до 250 °C. Его плотность при 20 °C не менее 775 кг/м³, кинематическая вязкость при 20 °C не ниже 1,25 мм²/с. Обладает удовлетворительными противоизносными свойствами, хорошей прокачиваемостью в области отрицательных температур. Понижение конца кипения ТС-1 по сравнению с РТ (280 °C) связано с тем, что в его хвостовых фракциях концентрируется значительное количество высокоплавких парафиновых углеводородов и сернистых соединений. Высокоплавкие парафиновые углеводороды повышают температуру кристаллизации. В зависимости содержания парафиновых углеводородов от вырабатывают:

- TC-1 с температурой кристаллизации -60 °C (для применения в районах крайнего севера);
- TC-1 с температурой начала кристаллизации -55 °C (для применения в остальных климатических районах государств содружества).

В последние годы вырабатывают ТС-1 с температурой кристаллизации 50 °С (для применения в климатических районах, где наружная температура воздуха не ниже -45 °С). Сернистые соединения вызывают коррозию любых металлов и сплавов, поэтому в топливе ТС-1 они ограничиваются. Массовая доля серы не превышает 0,25%, а содержание меркаптановой серы допускается не более 0,005%. РТ - унифицированное реактивное топливо предназначено для реактивных двигателей дозвуковой авиации. Выкипает данное топливо в температурном интервале 135...280 °С, имеет кинематическую вязкость не менее 1,25 мм2/с, а температуру вспышки не менее 28 °С. РТ

European Journal of Interdisciplinary Research and Development

ISSN (E): 2720-5746

Volume-22 December 2023

Website: www.ejird.journalspark.org

получают из нефти различных месторождений по технологи прямой перегонки с применением процессов гидроочистки и добавлением присадок, улучшающих термическую стабильность и противоизносные свойства топлива.

В процессе производства РТ прямогонные дистиллаты подвергают гидроочистке. При этом в топливе снижается содержание массовой доли серы до 0,1%, в том числе массовая доля меркаптановой серы понижается до 0,001%. Уменьшается количество непредельных углеводородов, смолистых веществ. Улучшается химическая и термическая стабильность топлива. В топливе уменьшено количество ароматических углеводородов до 18,5%, поэтому склонность РТ к нагарообразованию ниже, чем у ТС-1.

Для улучшения противоизносных свойств добавляют присадки: ионол в количестве 0,003-0,004% и нефтяные кислоты в количестве 0,002- 0,04%. В связи с дефицитом данных присадок в последнее время налажено производство РТ с присадками хайтек-580 в количестве 0,0025% и агидол в количестве 0,0031%. Последние десятилетия характеризуются быстрым сокращением запасов нефти в традиционных районах ее добычи. Новые месторождения находятся, как правило, в труднодоступных районах. Это затрудняет их освоение, приводит к существенному росту эксплуатационных расходов по добыче нефти, следовательно, к ее удорожанию. В качестве альтернативы топливам, получаемым из нефти, рассматриваются возможности широкого использования газовых топлив, получаемых из природного и нефтяного газов, а также - биотоплив.

Газовые топлива, по сравнению с нефтяными, обладают лучшими экологическими показателями. Их потенциальные ресурсы во много раз превосходят ресурсы нефти. Топлива из легких углеводородных газов в настоящее время уже применяются на автомобильном транспорте. Ведутся интенсивные работы по переводу части железнодорожного и авиационного парка на газовые топлива.

Ведутся исследования с целью проверки возможности использования нефтяного газа в авиации. В частности, комплексный анализ, выполненный в ЦИАМ, ЦАГИ и ВНИПИ газопереработка в начале 80-х годов, показал, что для вертолетов оптимальным топливом, получаемым из нефтяного газа, является смесь пропана, бутана, пентана и гексана, получившая в дальнейшем условное название «авиационное сконденсированное топливо» (АСКТ). АСКТ по многим эксплуатационным показателям превосходит применяемые на вертолетах традиционные авиатоплива. Оно экологически более чистое и менее коррозионно-активное: в нем отсутствуют сернистые соединения, ароматические углеводороды, смолы, асфальтены и другие вредные вещества, присутствующие в авиационных топливах (ТС-1, РТ и др.). АСКТ обладает лучшими пусковыми свойствами по сравнению с массовым авиатопливом ТС-1. АСКТ по физико-химическим и эксплуатационным свойствам существенно отличается от топлив, получаемых из нефти. Поэтому перевод транспортного средства на АСКТ требует определенной доработки двигателя и летательного аппарата. По инициативе ЦАГИ и ЦИАМ в 1982 г. было принято решение о технической реализации предложения по использованию топлива, получаемого из нефтяного газа, на вертолете Ми-8Т. В ЛНПО им. В.Я. Климова была проведена доработка двигателя, а в МВЗ им. М.Л. Миля - вертолета. Топливная система была доработана из расчета подачи в камеру сгорания АСКТ в жидком состоянии.

European Journal of Interdisciplinary Research and Development

ISSN (E): 2720-5746

Volume-22 December 2023

Website: www.ejird.journalspark.org

Предварительные стендовые испытания двигателя на сжиженном газе были проведены в ЛНПО им. В.Я. Климова в конце 1985 г. Двигатель испытывался на технологическом бутане, пропан-бутановых смесях, пропане и топливе ТС-1. Было установлено, что основные параметры двигателя при работе на сжиженных газах и топливе ТС-1 практически не отличались от параметров серийного двигателя. Модернизированный двигатель был установлен на специально подготовленный вертолет Ми-8Т. Первый полет экспериментального вертолета состоялся в конце 1987 г, а в начале 1988 г были успешно завершены летные испытания.

Исследования, проведенные ЦАГИ, ЦИАМ, ГосНИИГА, НИПИ газпереработка, ОКБ С.В. Ильюшина и А.С. Яковлева, показали возможность, а, главное, эффективность перевода на газовое топливо не только вертолетов, но и самолетов. Причем, такую разновидность газового топлива, как АСКТ-Б (обеспропаненное АСКТ), можно заливать непосредственно в плоские крыльевые топливные баки самолетов местных авиалиний (Ил-114, Як-40) и т.п. до температуры окружающей среды от +5 °С и ниже (такие температуры в некоторых районах Сибири и Севера бывают до 10 месяцев в году). Масса дополнительных агрегатов газокеросиновой топливной системы, например, для самолета Ил-114 не превысит ~20 кг. На разных стадиях разработки и внедрения находятся следующие специально предназначенные для транспорта сорта топлив: - сжиженный природный газ (СПГ) для поршневых двигателей по ТУ-51-03-85; - криогенное метановое топливо (КМТ); - авиационное сконденсированное топливо (АСКТ) по ТУ 39-1547-91.

Литература:

- 1. Литвинов А.А. Основы применения горюче-смазочных материалов в гражданской авиации: учебник для вузов. М.: Транспорт, 1987.
- 2. Рыбин Н.П. Авиационные горюче-смазочные материалы. М.: МИИГА, 1980.
- 3. Топлива, смазочные материалы, технические жидкости. Ассортимент и применение: справочник/ под ред. В.М. Школьникова. М.: Изд. центр «Техноформ», 1999.
- 4. Химмотология в гражданской авиации: справочник/ В.А. Пискунов, В.Н. Зрелов, В.Т. Василенко и др. М.: Транспорт, 1983. 5. ГОСТ 1012-72. Бензины авиационные. Технические условия. М.: Стандартинформ, 2008.
- 5. Лосиков Б. В. Нефтепродукты: свойства, качество, применение. Справочник М.: Химия, 1966. 776 с.
- 6. Данилов А. М. Применение присадок в топливах: Справочник СПб.: XИМИЗДАТ, 2010. 368 с.