European Journal of Interdisciplinary Research and Development

Volume-17 July 2023

Website: www.ejird.journalspark.org ISSN (E): 2720-5746

ИЗУЧЕНИЕ ВЕЩЕСТВЕННОГО СОСТАВА ХВОСТОВ И РЕЗУЛЬТАТЫ ОБОГАЩЕНИЯ МЕДНООБОГАТИТЕЛЬНОЙ ФАБРИКИ АЛМАЛЫКСКОГО ГМК

X. Ахмедов1,Ж. М. Бекпулатов2.

1Ташкентский государственный технический университет им. Ислама Каримова 2Ташкентский государственный технический университет им. Ислама Каримова

Аннотация:

Статье приведена спектральный и химический анализ двух проб техногенного отхода меднообогатительной фабрики Альмалыкского ГМК. В настоящее время при обогащении медьсодержащих руд образуются миллионы тонн техногенных отходов. Результатами исследование определено возможности извлечения ценных компонентов с использованием измельчения, схем селективной флотации из техногенных отходов. Предлагается схема переработки пиритных промпродуктов АГМК которое предусматривает получение пиритных концентратов по флотационной схеме.

Ключевые слова: Техногенный отход, проба, флотация, пиритный промпродукт, измельчения, извлечения, концентрат, золото, серебро, медь.

Introduction

Одним из приоритетных направлений народного хозяйства республики является переработка отходов горно-добывающых отраслей в цветной металлургии, угольной промышленности, промышленности строительных материалов, а также по производству удобрений.

Проблема рационального использования сырьевых ресурсов приобретает особую актуальность в связи с истощением запасов рудного сырья в цветной металлургии. Наряду с новых месторождений полезных ископаемых увеличение сырьевых ресурсов может быть обеспечено при вскрытии имеющихся резервов технологии переработки полезных ископаемых путем повышения степени комплексности использования сырья.

В Альмалыкском ГМК в процессе получения медно-молибденовых концентратов выделяется пиритный промпродукт, являющийся ценным комплексным сырьем для дополнительного производства благородных (золота, серебро, осмий), редких (селен, теллур, рений, молибден), цветных (медь, никель, кобальт) и черных (железа) металлов, а также серной кислоты. В настоящее время пиритный промпродукт объединяется с хвостами и безвозвратно сбрасывается в хвостохранилище, загрязняя окружающую среду. В процессе выполнения исследований изучался вещественный состав медно-порфировых руд, пиритных промпродуктов, а также пиритных концентратов и их технологические свойства, исходя из минерало-технологических особенностей изучаемых продуктов проводились исследования ценных компонентов (золота, серебра, меди и др.).

ISSN (E): 2720-5746

В качестве основных направлений технологического исследования приняты – доизмельчение пиритных промпродуктов с последующей их пенной флотацией.

Современное состояние технологии переработки сульфидных руд не обеспечивает цветную металлургию качественными селективными концентратами. Извлечение свинца, меди и цинка из сырья в среднем составляет соответственно 80-85, 70-75 и 60-65%. При этом в отвалах накапливается миллионы тонн пиритных хвостов обогащения, которые не используются в цветной металлургии из-за сложности их переработки, а в черной - ввиду содержания железа и наличия серы. Вместе с тем доля труднообогатимых руд в добываемом сырье постоянно возрастает.

В Узбекистане пиритные промпродукты выделяются в АГМК в процессе получения медно — молибденового концентрата из руд месторождения Альмалыкского района. Однако, настоящее время пиритный промпродукт объединяется с нерудными хвостами и выбрасывается в хвостохранилище. Между тем с этим продуктом теряется 30-40% редких, 25-30 % благородных, 15-20 % цветных металлов и 60% серы.

Объектом исследований, выполняемых в ИМРе, является пиритный промпродукт, выделяемый при обогащении медно-порфировых руд на медной обогатительной фабрике АГМК.

Пробы усреднялись и отбирались для химического анализа.

Таблица 1 Результаты спектрального анализа хвостов

Элементы	Содержание, %	Элементы	Содержание, %	
1	2	3	4	
Ba	0,06	Zr	0,003	
Be	0,001	Ni	0,002	
V	0,004	Pb	0,01	
Ga	0,001	Ag	0,001	
1	2	3	4	
Co	0,003	Sr	0,01	
Mn	0,1	Ti	0,1-0,3	
Cu	0,06	Cr	0,003	
Mo	0,001	Si	>1	
Fe	>1	Al	>1	
Ca	>1	К	>1	
Mg	>1	Na	0,4	

European Journal of Interdisciplinary Research and Development

Volume-17 July 2023

Website: www.ejird.journalspark.org ISSN (E): 2720-5746

Таблица 2 Результаты полного химического анализа хвостов

Компоненты	Содержание, %		IC and a second and a second a	Содержание, %	
	Проба 1	Проба 2	Компоненты	Проба 1	Проба 2
SiO ₂	49,4	45,3	Ѕсульфат.	0,7	0,1
Fe ₂ O ₃	8,0	7,5	Ca F ₂	0,25	-
Ni	0,001	0,001	Co	0,02	0,01
TiO ₂	1,0	1,0	P ₂ O ₅	0,5	0,1
MnO	0,03	0,04	CO ₂	1,5	1,1
Al ₂ O ₃	13,6	11,0	Au, Γ/T	1,0	0,4
CaO	2,0	2,1	Ag, Γ/T	4,9	2,8
MgO	2,5	2,5	Cu	0,3	0,14
Na ₂ O	0,5	0,7	Mo	0,0025	0,003
K ₂ O	4,3	4,5	Se	0,001	0,001
Ѕобщ.	9,6	10,0	Te	0,001	0,0001

Пиритный концентрат непосредственно получали из пиритных хвостов в лабораторных условиях с целью оценки возможности его использования и реализации. Результаты приведен в табл.№3.

Таблица 3 Результаты полного химического анализа пиритного концентрата

Компоненты	Содержание, %		Компоненты	Содержание, %	
	Проба 1	Проба 2	Компоненты	Проба 1	Проба 2
SiO ₂	18,68	7,2	CaF ₂	0,11	0,05
FeO	40,4	39,0	Со	н/о	100 г/т
Fe ₂ O ₃	-	1,5	Au, Γ/T	10,4	4,5
TiO ₂	0,5	н/о	Ag, Γ/T	90,0	30
MnO	0,045	н/о	Cu	4,0	1,45
Al ₂ O ₃	4,24	2,2	Mo	н/о	0,07
CaO	1,47	0,7	Se	15 г/т	65 г/т
MgO	0,96	0,4	Te	4,0 г/т	7,0 г/т
Ѕобщ.	28,13	45,6	Zn	0,082	н/о

Исследование показало, из хвостов флотации используя схемы «доизмельчение — селективная флотация» можно получить медный промпродукт с с содержанием: золота - $4.5-10.4 \, \Gamma/T$, серебра - $30-90 \, \Gamma/T$ и меди - $1.45-4.0 \, \%$.

Данный продукт в условиях мед завода АГМК может быть переработан плавкой совместно с медным концентратом. Предлагаемые технологические процесси – измельчение, флотация, плавка общеизвестна.

Предлагаемая схема переработки пиритных промпродуктов АГМК предусматривает: получение пиритных концентратов по флотационной схеме, доизмельчение пиритных

European Journal of Interdisciplinary Research and Development

Volume-17 July 2023

Website: www.ejird.journalspark.org ISSN (E): 2720-5746

концентратов и селективной флотации цветных металлов. При этом доизмельчением пиритных концентратов достигается раскрытие халькопирита, находящегося в сростках с пиритом. Процесс флотации И используется гетеро коагуляционного ДЛЯ концентрирования частиц тонких цветных металлов использованием высокоэффективных реагентов природного происхождения.

Рекомендуем провести полупромышленные испытания хвостов МОФ «АГМК» в опытной фабрике.

Литература

- 1. Зеленов В.И. Методика исследования золотосодержащих руд. М., Недра, 1973.
- 2. Барский Л.И., Алабян И.М. «Безотходная технология переработки минерального сырья», Итоги науки и техники, сер. Обогащение полезных ископаемых, 1981, т.15 с.3-100.