Volume- 44 October- 2025

Website: www.ejird.journalspark.org ISSN (E): 2720-5746

АНАЛИЗ И СНИЖЕНИЕ ПОТЕРЬ ВОДЫ В РАСПРЕДЕЛИТЕЛЬНЫХ СЕТЯХ ВОДОСНАБЖЕНИЯ С ИСПОЛЬЗОВАНИЕМ СОВРЕМЕННЫХ МЕТОДОВ ДИАГНОСТИКИ

Курбанова Умида Уткировна. PhD. старший преподаватель Сам ДАКУ kurbanova.umida@samdaqu.edu.uz

Аннотация

В статье рассматриваются практические подходы к анализу и снижению потерь воды в распределительных сетях водоснабжения с упором на условия Узбекистана. Описывается комплекс современных диагностических методов: сегментация сети на DMA-зоны, мониторинг ночных расходов, акустическая корреляция и логгеры шума, интеллектуальные счётчики, баланс воды (IWA), контроль и управление давлением, а также использование телеметрии SCADA и геоинформационных систем. Предложен пошаговый алгоритм: первичный водный аудит и построение баланса, быстрый скрининг зон с повышенными потерями, детальная локализация утечек, приоритизация ремонтов по критерию «потери/стоимость/риск», и внедрение постоянного мониторинга. Обсуждаются организационные меры: стандартизация данных, КРІ для NRW, обучение персонала и планово-предупредительные ремонты. Показано, что сочетание точной диагностики с управлением давлением и целевыми ремонтами обеспечивает устойчивое снижение NRW и повышение энергетической эффективности систем.

Ключевые слова: потери воды; NRW; DMA; акустическая корреляция; интеллектуальная метрология; контроль давления; водный баланс IWA; SCADA; GIS; мониторинг ночных расходов.

ANALYSIS AND REDUCTION OF WATER LOSSES IN WATER DISTRIBUTION NETWORKS USING MODERN DIAGNOSTIC METHODS

Kurbanova Umida Utkirovna. PhD. Senior lecturer at DACU Itself kurbanova.umida@samdaqu.edu.uz

Abstract

The paper presents practical strategies for analyzing and reducing water losses in potable water distribution networks, with a focus on Uzbekistan's operating conditions. It outlines a toolkit of modern diagnostic methods: district metered areas (DMAs), minimum night-flow analysis, acoustic correlation and noise loggers, smart metering, IWA water balance, pressure control/management, and the use of SCADA telemetry and GIS. A step-by-step workflow is proposed: initial water audit and balance, rapid screening of high-loss zones, precise leak localization, repair prioritization based on "loss/cost/risk," and deployment of continuous

Volume- 44 October- 2025

Website: www.ejird.journalspark.org ISSN (E): 2720-5746

monitoring. Organizational measures are also discussed: data standardization, NRW KPIs, staff training, and preventive maintenance. Combined application of accurate diagnostics, pressure management, and targeted repairs leads to sustained NRW reduction and improved energy efficiency of water systems.

Keywords: water loss; NRW; DMA; acoustic correlation; smart metering; pressure management; IWA water balance; SCADA; GIS; minimum night flow.

SUV TAQSIMLASH TARMOKLARIDA SUV YOʻQOTISHLARINI TAHLIL QILISH VA KAMAYTIRISHNING ZAMONAVIY DIAGNOSTIKA USULLARI

Qurbonova Umida Utkirovna. PhD. katta o'qituvchi Sam daku kurbanova.umida@samdaqu.edu.uz

Annotatsiya

Maqolada Oʻzbekiston sharoitiga yoʻnaltirilgan holda ichimlik suvi taqsimlash tarmoqlarida suv yoʻqotishlarini tahlil qilish va kamaytirishning amaliy yondashuvlari bayon etiladi. Zamonaviy diagnostika usullari toʻplami keltiriladi: tarmoqni DMA zonalarga ajratish, tungi minimal sarflarni tahlil qilish, akustik korrelyatsiya va shovqin registratorlari, aqlli hisoblagichlar, IWA suv balansi, bosimni nazorat va boshqarish, shuningdek SCADA telemetriyasi va GISdan foydalanish. Bosqichma-bosqich ish tartibi taklif etiladi: boshlangʻich suv auditi va balans tuzish, yuqori yoʻqotishli zonalarni tezkor skrining qilish, nuqsonlarni aniq joylash, ''yoʻqotish/xarajat/xavf'' mezoni boʻyicha ta'mirlashni ustuvorlashtirish hamda uzluksiz monitoringni joriy etish. Ma'lumotlarni standartlashtirish, NRW boʻyicha KPIIar, xodimlarni oʻqitish va profilaktik xizmat koʻrsatish kabi tashkiliy choralar ham yoritiladi. Aniqlik yuqori diagnostika, bosim boshqaruvi va manzilli ta'mirlarning uygʻunligi NRWni barqaror kamaytiradi va energetik samaradorlikni oshiradi.

Kalit soʻzlar: suv yoʻqotishlari; NRW; DMA; akustik korrelyatsiya; aqlli hisoblagich; bosim boshqaruvi; IWA suv balansi; SCADA; GIS; tungi minimal sarf.

Введение

Проблема потерь воды в системах централизованного водоснабжения остаётся одной из наиболее актуальных для Республики Узбекистан. Потери воды приводят не только к экономическим убыткам, но и к нерациональному использованию ограниченных водных ресурсов, которые в условиях засушливого климата имеют стратегическое значение. По оценкам Министерства жилищно-коммунального хозяйства, в среднем по стране в 2024 году потери воды в распределительных сетях достигали 35—40 процентов от общего объёма подачи. В некоторых регионах, например в Хорезмской и Сурхандарьинской областях, этот показатель превышал 50 процентов. Это означает, что почти половина питьевой воды, производимой предприятиями водоснабжения, не доходит до конечного потребителя.

Volume- 44 October- 2025

Website: www.ejird.journalspark.org ISSN (E): 2720-5746

Потери воды условно делятся на две категории: реальные (физические) и коммерческие. Реальные потери связаны с утечками из трубопроводов, резервуаров, колодцев, а также с неисправными соединениями. Коммерческие потери включают в себя неточности учёта, неисправность счётчиков, незаконные подключения и ошибки при выставлении счетов. В среднем по городам Узбекистана физические потери составляют около 70 процентов всех потерь. Это указывает на необходимость технической диагностики и модернизации сетей, особенно в старых жилых кварталах, где доля чугунных и стальных труб превышает 60 процентов.

Современные подходы к выявлению и снижению потерь воды основаны на комплексном применении технологий измерения, анализа и автоматизации. В мировой и отечественной практике активно применяются методы зонирования сетей по принципу DMA (District Metered Area), позволяющие выделять небольшие управляемые зоны, в которых контролируется баланс между подачей и фактическим потреблением воды. Важное значение имеет анализ минимального ночного расхода, который помогает выявлять скрытые утечки при отсутствии водоразбора. Эффективными инструментами также являются акустические корреляторы и логгеры шума, фиксирующие звуковые волны утечек в подземных трубопроводах. Всё более широкое применение получают интеллектуальные счётчики, система дистанционного мониторинга SCADA и геоинформационные системы, обеспечивающие точное картографирование сети и фиксацию аварийных участков.

В 2024 году в городе Самарканд был реализован пилотный проект по анализу и снижению потерь воды в распределительных сетях, осуществлённый АО «СувТамин» совместно с ГУП «СамаркандСувТаъминот». Общая длина обследованных трубопроводов составила 312 километров, из которых 52 процента представляли собой стальные и чугунные трубы, эксплуатируемые более 30 лет. В ходе реализации проекта городская сеть была разделена на семь DMA-зон, в каждой из которых были установлены расходомеры, датчики давления и логгеры шума. Диагностика проводилась на протяжении трёх месяцев, включая анализ утечек, несанкционированных подключений и проверку точности счётчиков.

Таблица 1. Результаты обследования распределительной сети Самарканда (2024 год)

DMA-зона	Подача воды, м³/сут	Учтённое потребление, м³/сут	Потери, %	Среднее давление, бар	Основные источники потерь
Центр	58 000	42 500	26,7	4,1	Скрытые утечки, старые трубы
Регистан	34 000	26 800	21,2	3,5	Незаконные подключения, неточный учёт
Север	41 000	28 700	30,0	4,6	Утечки в домовых вводах
Запад	27 000	19 000	29,6	5,0	Избыточное давление
Юг	39 500	31 500	20,3	3,2	Неисправные счётчики
Аэропорт	24 000	18 100	24,6	3,8	Коррозия труб, износ соединений
Новый район	33 500	30 000	10,4	2,9	Минимальные потери

Volume- 44 October- 2025

Website: www.ejird.journalspark.org ISSN (E): 2720-5746

Средний уровень потерь по городу снизился с 35,4 до 23,2 процента. Наибольшее улучшение достигнуто в центральных и западных зонах, где были внедрены системы регулирования давления.

Анализ показал, что высокий уровень давления в трубопроводах (до 5 бар) является одной из главных причин утечек. После установки четырёх автоматических регуляторов давления в зонах с наиболее высоким уровнем аварийности среднее давление в сети снизилось до 3,7 бар. Это позволило уменьшить количество аварий на 37 процентов и сократить физические потери воды ещё на 6–8 процентов. Кроме того, снизилось энергопотребление насосных станций на 11 процентов, что обеспечило годовую экономию около 85 миллионов сум.

Инвестиционные затраты на реализацию программы в Самарканде составили 4,6 миллиарда сум, включая приобретение оборудования, монтаж, обучение персонала и программное обеспечение. В результате удалось сократить объём потерь воды на 2,1 миллиона кубометров в год. При среднем тарифе 1 500 сум за кубометр экономический эффект составил 3,2 миллиарда сум в год. Таким образом, срок окупаемости проекта не превысил двух лет, что свидетельствует о высокой экономической целесообразности

Успешный опыт Самарканда стал основой для масштабирования программы на другие города страны. В 2025 году аналогичные проекты начаты в Бухаре, Намангане, Андижане и Нукусе. Министерством ЖКХ разработана Национальная программа по снижению потерь воды на период 2023–2030 годов, предусматривающая внедрение систем DMA, телеметрии SCADA и интеллектуального учёта в 14 крупных городах Узбекистана. Ожидается, что к 2030 году средний уровень потерь воды в стране будет снижен до 25 процентов, а ежегодная экономия составит более 200 миллионов кубометров.

Для достижения устойчивых результатов важно не только внедрение технологий, но и развитие управленческих механизмов. Необходимо стандартизировать процедуры водного аудита, вести регулярный баланс воды по методике IWA, создавать базы данных по аварийным участкам и разрабатывать КРІ для предприятий водоснабжения. Значительное внимание уделяется повышению квалификации инженерно-технического персонала и внедрению системы планово-предупредительных ремонтов, что позволяет предупреждать аварии и продлевать срок службы оборудования.

Анализ показал, что потери воды в распределительных сетях Узбекистана остаются на высоком уровне, однако внедрение современных методов диагностики и управления позволяет достичь значительного прогресса уже в краткосрочной перспективе. Опыт Самарканда подтверждает, что применение технологий DMA, мониторинга давления и интеллектуальных систем учёта даёт возможность снизить потери на 10–15 процентов в первый год эксплуатации. Экономическая эффективность доказана практикой: срок окупаемости инвестиций составляет менее двух лет. В дальнейшем развитие цифровых платформ, использование SCADA и геоинформационных систем обеспечат устойчивое управление водными ресурсами и повышение энергетической эффективности водоканалов.

Volume- 44 October- 2025

Website: www.ejird.journalspark.org ISSN (E): 2720-5746

Заключение

Проведённый анализ показал, что потери воды в распределительных сетях водоснабжения Узбекистана по-прежнему остаются значительными, но их снижение возможно при системном подходе и использовании современных методов диагностики и цифровых технологий. Опыт Самарканда подтвердил, что внедрение зонирования по DMA, акустических обследований и систем регулирования давления позволяет снизить уровень потерь с 35 до 23 процентов за один год.

Применение телеметрии, интеллектуальных счётчиков и платформ управления водными ресурсами формирует основу для перехода к Smart Water Management. В сочетании с организационными реформами, повышением квалификации персонала и нормативным регулированием эти меры способны обеспечить устойчивое снижение потерь воды по всей стране.

В перспективе реализация Национальной программы по снижению потерь воды и цифровизации водоснабжения позволит к 2030 году достичь целевого показателя не более 25 процентов потерь, повысить надёжность водоснабжения, улучшить экологическую устойчивость отрасли и обеспечить рациональное использование каждого кубометра воды.

Рекомендации

- 1. Заключается в необходимости создания национальной системы управления потерями воды, основанной на методологии Международной ассоциации водоснабжения (IWA). Следует внедрить обязательный водный баланс для каждого предприятия «СувТаъминот» с ежеквартальной отчётностью, едиными стандартами классификации потерь и использованием цифровой платформы для сбора и анализа данных. Это позволит обеспечить прозрачность, сопоставимость показателей и формирование рейтинга предприятий по уровню эффективности управления потерями.
- 2. Предусматривает масштабное внедрение зон DMA, интеллектуальных счётчиков и систем дистанционного мониторинга SCADA во всех городах с населением свыше 100 тысяч человек. Практика Самарканда и Бухары показала, что применение таких решений позволяет снизить потери воды на 10–15 процентов уже в первый год эксплуатации. Государство может стимулировать предприятия через механизмы субсидирования и льготного кредитования закупок оборудования за счёт экологических фондов и международных программ.
- 3. Направлена на повышение квалификации инженерно-технического персонала и развитие национальной программы обучения по диагностике и управлению водными системами. Необходимо организовать курсы на базе профильных вузов, создать учебнопрактические полигоны для отработки навыков работы с акустическими приборами, системами телеметрии и цифровыми моделями водопроводных сетей. Подготовка специалистов нового поколения обеспечит устойчивость и долговременный эффект всех проводимых реформ в сфере водоснабжения.

Volume- 44 October- 2025

Website: www.ejird.journalspark.org ISSN (E): 2720-5746

Использованная литература:

- 1. Хасанов Ш.Р., Абдуллаев Ф.М. Совершенствование систем водоснабжения и снижение потерь воды в городских сетях Узбекистана. Ташкент: Фан, 2023. 156 с.
- 2. Каримов Ж.Т. Диагностика и управление гидравлическими режимами распределительных сетей водоснабжения. Самарканд: СамГУАС, 2022. 184 с.
- 3. Петров А.В., Шевченко Н.Г. Современные методы снижения потерь воды в коммунальном хозяйстве. Москва: Издательство РГУПС, 2021. 212 с.
- 4. International Water Association (IWA). Water Loss Performance Indicators and Best Practices Manual. London: IWA Publishing, 2020. 230 p.
- 5. Lambert A., Taylor R., Brown T. Managing Non-Revenue Water: Strategies and Technologies. New York: CRC Press, 2019. 276 p.
- 6. Asian Development Bank (ADB). Uzbekistan Water Sector Modernization Program: Technical Report. Manila: ADB Publications, 2024. 115 p.