
European Journal of Interdisciplinary Research and Development
Volume-08 Oct. - 2022
Website: www.ejird.journalspark.org ISSN (E): 2720-5746

180 | P a g e

IMPROVEMENT THE QUALITY OF IOT BIG DATA: AN OUTLIER DETECTION

APPROACH

Mshtaq Talib Mahdi Ali1

Department of Physiology, Hammurabi College of Medicine,

University of Babylon, Babylon, Iraq

mailto:mushtaq.talib@uobabylon.edu.iq

Abstract

With the advent of the Internet, many concepts have been introduced in our technological life.

One of the common and promising concepts that have attracted research communities is the

Internet of Things (IoT). This concept assumes that objects (e.g., devices, sensors, processors,

appliances, etc.) around us are connected and communicated with each other as a single

network. The quality of data exchanged and its uncertainty are considered the main challenges

that face developers when designing IoT models. This is due to the large-scale data generated

by network objects that leads to redundancy, noise, and inconsistency in the collected data,

which, in turn, yield a variety of issues. Moreover, IoT network is considered heterogeneous

since different types of devices and applications are gathered to generate complex-considered

data that is difficult to analyze. This data may follow anomalous behavior that leads to having

abnormal data points, which impact the quality of data. The literature includes a lot of works

that deal with the aforementioned issues. However, most of the approaches struggle the

complexity and accuracy. Therefore, this work suggested a DBSCAN-based approach using

resilient distributed databases in distinguishing abnormal/outlier data and maintain the IoT data

quality. Three datasets are examined in the proposed approach, namely, 2D, 3D, and 25D. The

results of the proposed approach are benchmarked with the literature. The findings showed the

proposed approach outperformed the benchmarking in terms of addressing the low

dimensionality and handling the large-scale data. Moreover, the proposed approach can

accurately distinguish the abnormal/outlier data and improve the quality of data using resilient

distributed datasets.

Keywords: IoT, Big data, Cloud Computing, Abnormal/Outlier Detection.

I. Introduction

Most of today's devices and technologies are designed with the ability to connect to the Internet.

In this case, the infrastructure of the Internet of Things (IoT) has become true and adoptable

[1][2]. Furthermore, collecting high-quality data from IoT objects is not an easy task to be

performed. In this context, the IoT straggles issues related to many aspects such as data analysis

issues. This is due to the heterogeneity of the IoT environment that leads to having outlier and

abnormal data. In the literature, several approaches have been developed for overcoming this

issue. Therefore, this work comes to overcome this issue and maintain high-quality data

through detecting outlier data points using a “Density-Based Spatial Clustering of Applications

with Noise (DBSCAN)” algorithm. The reason behind using the DBSCAN is the ability to detect

particular shaped clusters. Also, it is able to sense outlier and noisy data. In addition to the

mailto:mushtaq.talib@uobabylon.edu.iq

European Journal of Interdisciplinary Research and Development
Volume-08 Oct. - 2022
Website: www.ejird.journalspark.org ISSN (E): 2720-5746

181 | P a g e

aforementioned, DBSCAN is considered a simple algorithm and easy to implement with

minimum cost consumed as well as it does not need user actions [3] [4]. This algorithm was

designed to be suitable to work on a single machine. However, it struggles to deal with large-

scale data and the situation when it is needed to migrate data to multiple terminals within a

network [5][6]. According to the literature, the MapReduce technique is one of the most

common approaches that has been used for scaling algorithms in the literature such as the works

of [7] and [8]. Moreover, the authors of [9] suggested a method called “NG-DBSCAN”, which

was based on the MapReduce technique and DBSCAN algorithm that permitted running the

algorithm over the Hadoop. However, the researchers in [10] found that MapReduce struggles

with the issues that its actions and processes are performed through the file system. This

specific issue leads to a gain high delay and high computational cost. To mitigate this issue,

the authors of [10] suggested an approach that used abstraction for in-memory computing. This

kind of approach is called Resilient Distributed Datasets (RDDs).

In RDDs, huge data is processed by utilizing the main memory (RAM). The actions,

processing, and transformations tasks take the benefit of the cache memory aiming to speed up

the computations and minimize the cost. This kind of algorithm has been intensively used in

the literature. For example, the researchers in [11] developed a new method called RDD-

DBSCAN of which the goal was to address the issues of MapReduce with DBSCAN. Also,

they aimed to implement a real parallel environment that is able to distribute the loads using

RDDs.

The MapReduce technique has also been used in developing anomaly detection applications

the work under the IoT (e.g., Anomaly Detection Engine (ADE) [12]). The purpose of this

application is to detect abnormal behavior of IoT collected data and distinguish outliers using

time-series models [12]. Also, advanced statistical models can also be used for this specific

purpose such as the work of Nesa et al. [13]. Moreover, machine learning techniques can also

be involved in developing a model for detecting anomalous data. Hasan et al. [14] measured

the performance of different machine learning algorithms (e.g., “Support Vector Machine

(SVM)”, “Random Forest (RF)”, “Logistic Regression (LR)”, “Decision Tree (DT)”, and

“Artificial Neural Network (ANN)”). The authors of [14] performed the benchmarking based

on the appropriateness of the approach in terms of detecting anomalous data in IoT.

Another limitation that affects the use of RDD-DBSCAN is that it can deal only with low-

dimensional data. Hence, the contribution of this work is to overcome this limitation and

develop a new approach for detecting outliers in IoT applications. This can be performed by

horizontally scaling the DBSCAN algorithm. This feature enables the algorithm to deal with

multiple terminals (node) and distribute loads accordingly using RDDs. Another algorithm is

involved that is called “NRDDDBSCAN” aiming to address the limitation in low dimensionality

of “RDD-DBSCAN”. Furthermore, the Euclidean approach was also used in the literature to

efficiently deal with the high dimensionality of data such as the works [15] and [16] that used

“Message Passing Library Interface (MPI)” for parallel processing and Map Reduced

techniques respectively.

This paper is organized as follows: Section two describes the research method followed by the

authors and the steps of the approach. Section 3 demonstrates the obtained results using the

proposed approach as well as the benchmarking with other approaches in the literature. Also,

European Journal of Interdisciplinary Research and Development
Volume-08 Oct. - 2022
Website: www.ejird.journalspark.org ISSN (E): 2720-5746

182 | P a g e

this section discusses the obtained results and highlights the main points. Section 4 concludes

this work and suggests some recommendations to readers with potential future work.

II. Research Method

A. Concepts and Techniques

The term “Internet of Things (IoT)” was first introduced as a group of objects that are connected

and communicated using RFID technology [17]. The general architecture of the IoT comprises

four layers according to [18] and [19] as follows: Perception Layer includes the hardware

objects such as sensors, processors, actuators, and/or even smart devices. These objects are

used for different purposes such as measuring a particular event within the environment, collect

and generating data, or used for data transfer within the IoT network. Network Layer, involved

in the connections and the communications among IoT objects (e.g., sending and receiving

tasks). Service Layer is used for monitoring and managing IoT services for users and

applications. Finally, the Interface Layer coordinates the communications among

homogeneous and heterogeneous devices. According to these layers, developers should be

aware of which layer they are dealing with during IoT applications development.

On the other hand, as mentioned, a large-scale of data is generated by the IoT devices and this

scale is increased over time. This leads to having issues related to the security of data, storage

capacity, data analysis, privacy, etc. [20][21]. In the literature, a lot of tools have been

developed and used to handle IoT data such as Map Reduce, Hadoop, and RDDs [22][23]. The

performance of Map Reduce is affected when it is needed to have iterative operations on the

data. This is because Map Reduce writes data on disk after each map, which makes it struggle

the shuffling and reducing processes in terms of computation cost [24][25]. Addressing this

issue can be performed using the resilient distributed datasets RDDs approach. It has many

features such as being fault-tolerant, handle parallel operations, and does not need to store data

in Hadoop Distributed Files System, which makes it faster. These features can be considered a

powerful tool alternative to Map Reduce. Therefore, this work makes use of the RDDs to design

NRDD-DBscan for efficiently detecting IoT data outliers.

Furthermore, the DBSCAN algorithm can be horizontally scaled and the large-scale data is

partitioned into many portions (chunks). Given that D is the whole data that is intended to be

partitioned, then each portion is termed CH where CH1, CH2, …, CHn are all the portions and

can be formulated as follows:

𝐷 = 𝐶𝐻1 ∪ 𝐶𝐻2 ∪ … 𝐶𝐻𝑛 (1)

Where n is the total number of chunks in D. All these chunks should be processed across multi

nodes and each of which should apply the DBSCAN independently. The DBSCAN creates

clusters based on the common features that are shared among the data points. Outliers data

points are detected if and only if there are no shared features in common with other data points

and can be formalized as follows:

𝐶𝐻 = (𝑐1 ∪ 𝑐2 ∪ … 𝑐𝑚) ∪ (𝑜1 ∪ 𝑜2 ∪ … 𝑜𝑙) (2)

Where CH denotes a particular chunk and the clusters are represented by c1, c2, …, cm, and the

outliers are represented by o1, o2, …, ol. The m reflects the number of clusters that is not

European Journal of Interdisciplinary Research and Development
Volume-08 Oct. - 2022
Website: www.ejird.journalspark.org ISSN (E): 2720-5746

183 | P a g e

necessary to equal to the number of outliers l. It should be mentioned that an outlier is not

necessary to exist. Now, each cluster is represented as follows:

𝑐 = 𝑥1 ∪ 𝑥2 ∪ … 𝑥𝑘 (3)

Where c denotes a cluster and x1, x2, …., xk are the data points with a total number of k. The

DBSCAN algorithm is based on two parameters: MinPts and . The former represents the

minimum number of neighbors (points) that are needed to form a cluster. The latter represents

the radius of the cluster. Moreover, the DBSCAN includes concepts that should be well-

understood before implementing it. For instance, “core point” is a point that belongs to c and

has neighbors within its radius, “border point” is a point in c when but it is not a core, “directly

reachable” is a point that is directly reachable by a core point and positioned in its neighbors,

“density reachable” is a point that is directly reachable by a core point and indirectly reachable

by another core point and these two core points are directly reachable to each other.

One of the advantages of the DBSCAN is that it starts with unlabeled data points and its output

is labeled data points. In addition, the detected outliers are flagged with a value of (-1). In this

work, determining the neighbors of a particular point can be performed by calculating the

distance among points. This step is done using the “Euclidean Distance Matrix (EDM)” [26].

B. The Proposed Approach

The proposed NRDD-DBSCAN aims to detect outliers with the support of RDDs. The

proposed approach can be applied to n-dimensions and the implementation is performed using

Apache Spark. Three phases are used in the proposed approach: 1) data allocation and

reduction, 2) clustering and 3) aggregation. After performing these steps, outliers should be

detected (if any). The proposed approach (NRDD-DBSCAN) is described in Algorithm 1:

Now, the three phases are described in detail as follows.

Data Allocation and Reduction Phase

Algorithm 1: Steps of the proposed approach.

Goal: Outliers Detection in Data Points

Input: A set of data points (x= x1, x2, …., xk)

Output: A set of outlier points (o= o1, o2, …., ol)

Steps:

Step#1: SET labeled_chunks TO 

Step#2: Data Portions =Evenlychunks (X, Nodenumber, RowNumber)

Step#3: FOREACH chunk in Data Portions DO

Step#4: pn =DBSCAN (chunk, , MinPts)

Step#5: labeled_chunks = labeled_chunks  pn

Step#6: ENDFOR

Step#7: AggregatedChunks = aggregation (labeled_chunks, , MinPts)

Step#8: RenamedPoints = renaming (AggregatedChunks)

Step#9: Outliers = all the (-1) in RenamedPoints

European Journal of Interdisciplinary Research and Development
Volume-08 Oct. - 2022
Website: www.ejird.journalspark.org ISSN (E): 2720-5746

184 | P a g e

Two steps are included in this phase, the first one is the data allocation process that needs the

data point to be represented in two dimensions aiming to cluster them (see Figure 1). The main

reason behind this representation is that NRDD-DBSCAN can efficiently partition the 2D data.

Therefore, reducing the data is crucial and can be implemented using the “Principle Component

Analysis (PCA)” algorithm [27][28]. PCA is one of the most efficient data reduction

approaches that are widely used for this specific purpose. However, the classic approach of

PCA cannot be implemented due to the high volume of data that consumes a large amount of

memory that cannot be handled in regular computer systems [29]. The implementation,

therefore, is performed using the PCA algorithm of “Apache Spark APIs” (pyspark) [22]. Then,

the data allocation procedure starts to load the two-dimensional data and perform a splitting

process that divides the data into many evenly-chunks. Here, it is worth mentioning that the

number of portions should be compatible, in terms of size, with the available memory space.

The reason behind this procedure is to avoid the RDDs to read from the secondary memory

and makes the process slower, which is not sufficient for the proposed approach. Algorithm 2

describes the details of the whole process.

(#1) n-D converted into a

2-D dataset using PCA

(#2) PC1 is sorted in

ascending order and

divided using evenly

chunks

(#3) N chunks are

assigned to N nodes.

Figure 1: The processes of data allocation and data reduction.

European Journal of Interdisciplinary Research and Development
Volume-08 Oct. - 2022
Website: www.ejird.journalspark.org ISSN (E): 2720-5746

185 | P a g e

Local Clustering Phase

In the previous phase, a set of chunks is created where each of which includes unlabeled data

points. The chunks are now ready to be assigned to nodes that, in turn, will use the DBSCAN

independently. The output of applying the DBSCAN is labeled data points. These points are

labeled as a border data point, core data point, or outlier data point. The first two types of points

will be joined to the same or different clusters based on the number of features in common

among the points.

Data Aggregation and Renaming Phase

The aggregation process takes the chunks as its input, which includes labeled data points of

one of the three defined types (core, border, or outlier). As mentioned, all the outliers are

flagged with a value of (-1), while core and border points are flagged with their portion and

chunk. For instance, if a data point is flagged with P1c0, it means that this data point belongs to

portion 1 and chunk 0. The main issue in the aggregation process is when dealing with edge

points. These kinds of points are positioned on the border of portions, which makes it a

candidate to be an outlier point. Based on Figure 2, if the value of MinPts is 2 and the value of

radius is 1, then the data point x_1 belongs to P1c1, but it also belongs to P2c0. Similarly, the

data points x_6 and x_7 have almost seemed like outliers, but they belong to the same cluster

of x_4 and x_5. Therefore, the aggregation process will process each portion and starts with

portion 1 by obtaining its PC1 which is x_1 (the last point in portion 1). The position of x_1 is

considered the startline of that portion. The startline of all the portions is used to detect the

edges of these portions. The process starts with subtracting (“goBackOneEpsilon”) and adding

(“goForwardOneEpsilon”) one epsilon from the startline points. After that, all the in-between

points are able to share more than one cluster. Then, using the Euclidian Distance Matrix is

Algorithm 2: The description of evenly chunks.

Goal: Create N chunks to be distributed to N nodes within the network.

Input: A set of unlabeled data points (x= x1, x2, …., xk)

Output: A set of chunks (c= c1, c2, …., cl), each chunk contains data points that fit the node’s memory space.

Steps:

Step#1: SET chunks TO 

Step#2: Reduce_Dimensionality = PCA (X,2)

Step#3: Sorted_Data = AscendingSort(PC1)

Step#4: #_of_Points_Per_Node = Ceiling (Sorted_Data.Length / Nodes_Number)

Step#5: IF (#_of_Points_Per_Node > Rows_Number) THEN

 Nodes_Number = Sorted_Data.Length / Rows_Number

 CALCULATE #_of_Points_Per_Node

 ENDIF

Step#6: FORALL n in Nodes_Number DO

c = Split_Points(Sorted_Data)

Step#7: Chunks = Chunks  c

Step#8: RETURN Chunks

European Journal of Interdisciplinary Research and Development
Volume-08 Oct. - 2022
Website: www.ejird.journalspark.org ISSN (E): 2720-5746

186 | P a g e

applied for each data point aiming to determine the neighbors. Here, when the number of

neighbors is greater than or equal to the MinPts, four cases should be considered for each

neighbor point as described in detail in Algorithm 3. After completing the aggregation process,

each point in the data is assigned to a cluster (see Figure 3). The renaming process is performed

after the aggregation and aims to rename the labels of the points. In other words, instead of

using the notion PnCn, the renaming process makes it in the form of cn as described in Algorithm

4.

(#1) drawing startline for

each chunk and expand it

to be (+ and -) aiming to

gather the edge points.

(#2) When =1and

MinPts=3, then exploring

the edges that share more

than one cluster for all the

chunks.

(#2) Obtain the output of

labeled data points and these

labels can be core, border,

or outlier.

Figure 3: Process steps of data aggregation in the proposed approach.

Figure 2: The process of data aggregation.

European Journal of Interdisciplinary Research and Development
Volume-08 Oct. - 2022
Website: www.ejird.journalspark.org ISSN (E): 2720-5746

187 | P a g e

Algorithm 3: The process of data aggregation.

Goal: Aggregating data points.

Input: A set of labeled data points (P= P1, P2, …., Pn), the radius , and MinPts

Output: A set of points (Y= y1, y2, …., yl) where y is labeled points with flags of border, core, and outlier.

Steps:

Step#1: FOREACH PART in (P) – Last portion DO

Step#2: Startline = LastElement(PART)

Step#3: goBackOneEpsilon = startline - 

Step#4: goForwardOneEpsilon = startline + 

Step#5: borderPoints = GetPoints between (goBackOneEpsilon, goForwardOneEpsilon)

Step#6: FOREACH P in borderPoints DO

 neighbors=GetNeighbors(P,)

 IF neighbors.length >= MinPts THEN

 FOREACH neighborPoints in neighbors DO

 IF portion(neighborPoint) !==portion(P) OR (cluster(neighborPoint)==(-1) & cluster(P) ==(-1)) THEN

 IF cluster(P) ==(-1) & cluster(neighborPoint) !==(-1) THEN

 Cluster(P)=cluster(neighborPoint)

 portion(P)=portion(neighborPoint)

 ELSE

 IF Cluster(neighborPoint)==(-1) & cluster(P)!==(-1) THEN

 Cluster(neighborPoint)=cluster(P)

 Portion(neighborPoint)=portion(P)

 ELSE

 IF cluster(neighborPoint) ==(-1) & cluster(P) ==(-1) THEN

 NEW_CLUSTER=CreateNewClusterID()

NEW_PORTION=CreateNewPortion()

 Cluster(P)= NEW_CLUSTER

 portion(P)= NEW_PORTION

 cluster(neighborPoint)=cluster(P)

 portion(neighborPoint)=portion(P)

 ELSE

 Points_neighbor_cluster=GetPointsOF(cluster(neighborPoint),

portion(neighborPoint))

 FOREACH P in (PonitsOfNeigborCluster) DO

 Cluster(P)=cluster(neighborPoint)

 Portion(P)=portion(neighborPoint)

 ENDFOR

 ENDIF

 ENDIF

 ENDIF

 ENDFOR

 ENDIF

ENDFOR

Step#7: aggregatePoints=P1P2……Pn

Step#8: RETURN aggregatePoints

European Journal of Interdisciplinary Research and Development
Volume-08 Oct. - 2022
Website: www.ejird.journalspark.org ISSN (E): 2720-5746

188 | P a g e

III. Results and Discussions

A. Datasets Used

The proposed NRDD-DBSCAN was implemented using “Apache Spark” which simulated the

RDDs using Python programming language (pyspark API) [22]. The evaluation of the proposed

approach was based on performing three main experiments as follows:

- Experiment_1: it was performed using a dataset (“non-synthetic”) [30] of four attributes

and 434,874 instances.

- Experiment_2: it was performed using a dataset (“synthetic”) of one-million records,

three centers, and two features.

- Experiment_3: it was performed using a dataset (“synthetic”) of one-million records,

three centers, and twenty-five features

The use of two synthetic datasets in the experiments enabled to measure the performance of

the proposed approach. It should be mentioned that the two datasets were created using the

“make_blobs method of scikit-learn’s samples” [31]. The evaluation measurements used in this

work are “Adjusted Rand Index (ARI)”, “Adjusted Mutual Information (AMI)”, “Homogeneity

(Ho)”, “Completeness (Co)”, and “V-measure (Vm)”. Using these measurements needed to

know “label_true” as ground truth labels [32].

B. Experimental Results

Experiment_1: In this experiment, a sample of 100 instances was used with parameters values

of =1 and MinPts=3. Also, “labels_true” and “labels_pred” were used, where the former was

the “ground truth” of the samples as presented in [33]. The latter represented the results of the

proposed approach. Practically, the DBSCAN is applied after excluding the “OSM_ID”

column. After that, the columns of “LONGITUDE”, “LATITUDE”, and “ATTITUDE” were

normalized and scaled aiming to address the n-dimensionality issue. The findings revealed four

Algorithm 4: The process of renaming data points.

Goal: Renaming the aggregated data points

Input: A set of labeled data points (X= x1, x2, …., xk)

Output: A set of points (X= x1, x2, …., xk), where core and border points are renamed as cn (Cluster_ID) and ourliers as (-1).

Steps:

Step#1: #OfPortions=max(portion(x))

Step#2: #OfClusters=max(cluster(x))

Step#3: NEW_CLUSTER=uniqueValue

Step#4: FOREACH portion in range(1, #OfPortions) DO

 FOREACH Cluster_ID in range(0, #OfClusters) DO

 filteredPoints=filteredPointsBy(x, cluster_ID, Portion_ID)

IF (filteredPoints.length > 0) THEN

 Cluster(filteredPoints)= NEW_CLUSTER

 NEW_CLUSTER=New_uniqueValue

ENDIF

 ENDFOR

 ENDFOR

Step#5: REUREN x

European Journal of Interdisciplinary Research and Development
Volume-08 Oct. - 2022
Website: www.ejird.journalspark.org ISSN (E): 2720-5746

189 | P a g e

clusters (c0, c1, c2, and c3), while the outliers were defined as (-1) labels as well as the cluster

column reflected the values of “labels_ true”. Now, to compute the “labels_pred” defined by

NRDD-DBSCAN, the simulation environment was prepared as a cluster of two “Virtual

Machines (VM)” of Linux. Where each VM has two processors and the main memory of 4096

MB and secondary storage of 20 GB. Based on the obtained results, the points were clustered

into four clusters (100, 200, 300, and 400) and (-1) for the outliers, and the cluster column was

the values of “labels_pred”. The results of the measurements described in the previous section

were as follows:

Table 1: The results of the evaluation measurements in Experiments_1 for a 3-D dataset.

ARI AMI Ho Co Vm

1.0 1.0 1.0 1.0 1.0

These results proved that the results obtained from DBSCAN and the proposed are similar in

the case of a 3-D dataset.

Experiment_2: The second experiment used synthetic datasets and a sample of 1000 instances,

the values of the parameters were; =0.5 and MinPts 3. The values of “labels_pred” were the

results of NRDD-DBSCAN. Interestingly, similar results of Experiment_1 were obtained in

terms of the measurements used (see table 2). This proved that both results of “DBSCAN” and

the scaled one were in agreement in the case of 2-D datasets.

Table 2: The results of the evaluation measurements in Experiments_2 for a 2-D dataset.

ARI AMI Ho Co Vm

1.0 1.0 1.0 1.0 1.0

Experiment_3: The third experiment was performed on 25 features synthetic dataset. A

sample of 1000 instances were considered in this experiment and the parameters were =0.5

and MinPts 3. The “labels_true” was the ground truth class and computed using the

“make_blobs method of scikit-learn’s samples” generator utility [31]. The “labels_pred” was

the results of NRDD-DBSCAN, which represented the estimated number of clusters which was

3. Table 3 presents the results of Experiment_3 I term of the measurements used.

Table 3: The results of the evaluation measurements in Experiments_3 for a 25-D dataset.

ARI AMI Ho Co Vm

0.996 0.985 1.0 0.985 0.992

Based on Tables 1, 2, and 3, a comparison was performed for the performance of the three

experiments. It can be observed that both RDD-DBSCAN and NRDD-DBSCAN with 2-D

European Journal of Interdisciplinary Research and Development
Volume-08 Oct. - 2022
Website: www.ejird.journalspark.org ISSN (E): 2720-5746

190 | P a g e

datasets provided similar results to the original version of the DBSCAN. However, the RDD-

DBSCAN struggled to deal with high-dimensional datasets. On the other hand, the NRDD-

DBSCAN has the ability to deal with high dimensional datasets and produce efficient results

as observed in this work when dealing with 3-D and 25-D datasets.

IV. Conclusions

This work suggested an approach for two main purposes, namely, addressing the issue of low

dimensional datasets and outlier detection. The proposed NRDD-DBSCAN approach was

examined using three experiments. These experiments were also utilized to evaluate the

performance of the proposed approach against other approaches in the literature. The NRDD-

DBSCAN used 2-D, 3-D, and 25-D datasets. The 2-D and 3-D datasets reflected identical

results for both NRDD-DBSCAN and its original version (DBSCAN). On the other hand, the

25-D dataset, in the experiments, was successfully implemented by the proposed approach. As

mentioned, this work aimed to detect noisy and outlier data points that impact the quality of

data exchanged in the IoT. The suggested approach was modeled to efficiently deal with high-

dimensional datasets. The results of the proposed approach are promising and can be adopted

by IoT developers and maintain data quality. However, this work has a main drawback, which

is the use of PCA for dimensionality reduction that makes the proposed approach struggle

dealing with nonlinear data. Therefore, as future work, there is an important area of

improvement in this work, which is developing the approach to be able to handle nonlinear and

highly correlated n-dimensional data.

References

1. Liu J, Yan Z. Fusion-An aide to data mining in Internet of Things. Information Fusion

2015;23(8):1–2.

2. National Intelligence Council, Disruptive Civil Technologies — Six Technologies with

Potential Impacts on US Interests Out to 2025— Conference Report CR 2008–07, April

2008, Available at www.dni.gov/nic/NIC_home.html.

3. Ester M, Kriegel H-P, Sander J, Xu X. A density-based algorithm for discovering clusters

in large spatial databases with noise. KDD 1996;96(34):226–31.

4. (2014, August 18) 2014 SIGKDD Test of Time Award. [Online]. Available:

http://www.kdd.org/blog/2014-sigkdd-test-time-award.

5. Chen M, Gao X, Li H. Parallel dbscan with priority r-tree. In: Information Management

and Engineering (ICIME), 2010 The 2nd IEEE International Conference on. IEEE; 2010.

p. 508–11.

6. Arlia D, Coppola M. Experiments in parallel clustering with dbscan. In: Euro-Par 2001

Parallel Processing. Springer; 2001. p. 326–31.

7. Dai B-R, Lin I-C. Efficient map/reduce-based dbscan algorithm with optimized data

partition. In: Cloud Computing (CLOUD), 2012 IEEE 5th International Conference on.

IEEE; 2012. p. 59–66.

8. He Y, Tan H, Luo W, Mao H, Ma D, Feng S, Fan J. Mrdbscan: an efficient parallel density-

based clustering algorithm using mapreduce. In: Parallel and Distributed Systems

(ICPADS), 2011 IEEE 17th International Conference on. IEEE; 2011. p. 473–80.

European Journal of Interdisciplinary Research and Development
Volume-08 Oct. - 2022
Website: www.ejird.journalspark.org ISSN (E): 2720-5746

191 | P a g e

9. Lulli A, Dell’Amico M, Michiardi P, Ricci L. In: Proceedings of the VLDB Endowment.

p. 157–68.

10. Zaharia M, Chowdhury M, Das T, Dave A, Ma J, McCauley M, et al. Resilient distributed

datasets: A fault-tolerant abstraction for in-memory cluster computing. In: Proceedings of

the 9th USENIX conference on Networked Systems Design and Implementation. USENIX

Association; 2012. p. 2.

11. Cordova I, Moh T. DBSCAN on resilient distributed datasets. IEEE 2015:531–40.

12. Mohamudally N, Mohaboob M. Building an anomaly detection engine (ADE) for IoT smart

applications. Elsevier 2018;134:10–7.

13. N Nesa, T Ghosh, I Banerjee, Outlier detection in sensed data using statistical learning

models for IoT, in: IEEE Wireless Communications and Networking Conference (WCNC),

2018.

14. Hasan M, Islam M, Zarif I, Hashem M. Attack and anomaly detection in IoT sensors in IoT

sites using machine learning approaches. Elsevier 2019;7:1–14.

15. Patwary M, Satish N, Sundaram N, Manne F, Habib S, Dubey P. PARDICLE: parallel

approximate density-based clustering. IEEE 2014:560–71.

16. Kim Y, Shim K, Kim M, Lee J. DBCURE-MR: An efficient density-based clustering

algorithm for large data using MapReduce. Elsevier 2014;42:15–35.

17. Ashton K. (22 June 2009). That ’Internet of Things’ Thing‘‘. Retrieved 9 May 2017,

Available at http://www.rfidjournal.com/articles/view?4986.

18. Li S, Xu LD, Zhao S. The internet of things: a survey. Elsevier 2014;54 (15):243–59.

19. He W, Xu LD, Li S. Internet of Things in Industries: A survey. IEEE 2014;10 (4):1–11.

20. Ciobanu RI, Cristea V, Dobre C, Pop F. Big data platforms for the internet of things.

Springer; 2014. p. 3–34.

21. G. Luo, X. Luo, T. F. Gooch, L. Tian and K. Qin, ‘‘A Parallel DBSCAN Algorithm Based

On Spark,” IEEE International Conferences on Big Data and Cloud Computing (BDCloud),

pp.548-553, 2016.

22. spark.apache. (2018, June, 22). [Online]. Available: http://spark.apache.

org/docs/2.2.0/api/python/index.html.

23. Gandomi A, Haider M. Beyond the hype: Big data concepts, methods, and analytics.

Elsevier 2015;35(2):137–44.

24. Wikipedia. (2015, April, 5) Scalability — Wikipedia, the free encyclopedia. Accessed 22-

July-2004. [Online]. Available: http://en.wikipedia.org/wiki/Scalability.

25. Dean J, Ghemawat S. Mapreduce: simplified data processing on large clusters. Commun

ACM 2008;51(1):107–13.

26. Dokmanic I, Parhizkar R, Ranieri J, Vetterli M. Euclidean Distance Matrices: Essential

Theory, Algorithms and Applications. IEEE 2015;32(6):1–17.

27. Jolliffe I. Principal component analysis. New York: Springer-Verlag; 1986.

28. Lee YK, Lee ER, Park BU. Principal component analysis in very highdimensional spaces.

StatisticaSinica 2012;22:933–56.

29. Zhang T, Yang B. Big data dimension reduction using PCA. In: IEEE International

Conference on Smart Cloud. p. 152–7.

30. UCI Machine Learning Repository. [Online]. Available: https://archive.ics.uci.

edu/ml/datasets/3D+Road+Network+%28North+Jutland%2C+Denmark%29.

http://spark.apache/
https://archive.ics.uci/

European Journal of Interdisciplinary Research and Development
Volume-08 Oct. - 2022
Website: www.ejird.journalspark.org ISSN (E): 2720-5746

192 | P a g e

31. (2018, September 1) Dataset loading utilities. [Online]. Available: http://scikitlearn.

org/stable/datasets/

32. (2018, September 2) Clustering performance evaluation. [Online]. Available: http://scikit-

learn.org/stable/modules/clustering.html#clusteringperformance- evaluation.

33. 8, September 2) Clustering. [Online]. Available: http://scikit-learn.org/

stable/modules/generated/sklearn.cluster.DBSCAN.html

http://scikitlearn/
http://scikit-learn.org/stable/modules/clustering.html#clusteringperformance-
http://scikit-learn.org/stable/modules/clustering.html#clusteringperformance-
http://scikit-learn.org/

