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Abstract 

With the advent of the Internet, many concepts have been introduced in our technological life. 

One of the common and promising concepts that have attracted research communities is the 

Internet of Things (IoT). This concept assumes that objects (e.g., devices, sensors, processors, 

appliances, etc.) around us are connected and communicated with each other as a single 

network. The quality of data exchanged and its uncertainty are considered the main challenges 

that face developers when designing IoT models. This is due to the large-scale data generated 

by network objects that leads to redundancy, noise, and inconsistency in the collected data, 

which, in turn, yield a variety of issues. Moreover, IoT network is considered heterogeneous 

since different types of devices and applications are gathered to generate complex-considered 

data that is difficult to analyze. This data may follow anomalous behavior that leads to having 

abnormal data points, which impact the quality of data. The literature includes a lot of works 

that deal with the aforementioned issues. However, most of the approaches struggle the 

complexity and accuracy. Therefore, this work suggested a DBSCAN-based approach using 

resilient distributed databases in distinguishing abnormal/outlier data and maintain the IoT data 

quality. Three datasets are examined in the proposed approach, namely, 2D, 3D, and 25D. The 

results of the proposed approach are benchmarked with the literature. The findings showed the 

proposed approach outperformed the benchmarking in terms of addressing the low 

dimensionality and handling the large-scale data. Moreover, the proposed approach can 

accurately distinguish the abnormal/outlier data and improve the quality of data using resilient 

distributed datasets. 

 

Keywords: IoT, Big data, Cloud Computing, Abnormal/Outlier Detection. 

 

 

I. Introduction  

Most of today's devices and technologies are designed with the ability to connect to the Internet. 

In this case, the infrastructure of the Internet of Things (IoT) has become true and adoptable 

[1][2]. Furthermore, collecting high-quality data from IoT objects is not an easy task to be 

performed. In this context, the IoT straggles issues related to many aspects such as data analysis 

issues. This is due to the heterogeneity of the IoT environment that leads to having outlier and 

abnormal data. In the literature, several approaches have been developed for overcoming this 

issue. Therefore, this work comes to overcome this issue and maintain high-quality data 

through detecting outlier data points using a “Density-Based Spatial Clustering of Applications 

with Noise (DBSCAN)” algorithm. The reason behind using the DBSCAN is the ability to detect 

particular shaped clusters. Also, it is able to sense outlier and noisy data. In addition to the 
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aforementioned, DBSCAN is considered a simple algorithm and easy to implement with 

minimum cost consumed as well as it does not need user actions [3] [4]. This algorithm was 

designed to be suitable to work on a single machine. However, it struggles to deal with large-

scale data and the situation when it is needed to migrate data to multiple terminals within a 

network [5][6]. According to the literature, the MapReduce technique is one of the most 

common approaches that has been used for scaling algorithms in the literature such as the works 

of [7] and [8]. Moreover, the authors of [9] suggested a method called “NG-DBSCAN”, which 

was based on the MapReduce technique and DBSCAN algorithm that permitted running the 

algorithm over the Hadoop. However, the researchers in [10] found that MapReduce struggles 

with the issues that its actions and processes are performed through the file system. This 

specific issue leads to a gain high delay and high computational cost. To mitigate this issue, 

the authors of [10] suggested an approach that used abstraction for in-memory computing. This 

kind of approach is called Resilient Distributed Datasets (RDDs).  

In RDDs, huge data is processed by utilizing the main memory (RAM). The actions, 

processing, and transformations tasks take the benefit of the cache memory aiming to speed up 

the computations and minimize the cost. This kind of algorithm has been intensively used in 

the literature. For example, the researchers in [11] developed a new method called RDD-

DBSCAN of which the goal was to address the issues of MapReduce with DBSCAN. Also, 

they aimed to implement a real parallel environment that is able to distribute the loads using 

RDDs. 

The MapReduce technique has also been used in developing anomaly detection applications 

the work under the IoT (e.g., Anomaly Detection Engine (ADE) [12]). The purpose of this 

application is to detect abnormal behavior of IoT collected data and distinguish outliers using 

time-series models [12]. Also, advanced statistical models can also be used for this specific 

purpose such as the work of Nesa et al. [13]. Moreover, machine learning techniques can also 

be involved in developing a model for detecting anomalous data. Hasan et al. [14] measured 

the performance of different machine learning algorithms (e.g., “Support Vector Machine 

(SVM)”, “Random Forest (RF)”, “Logistic Regression (LR)”, “Decision Tree (DT)”, and 

“Artificial Neural Network (ANN)”). The authors of [14] performed the benchmarking based 

on the appropriateness of the approach in terms of detecting anomalous data in IoT.  

Another limitation that affects the use of RDD-DBSCAN is that it can deal only with low-

dimensional data. Hence, the contribution of this work is to overcome this limitation and 

develop a new approach for detecting outliers in IoT applications. This can be performed by 

horizontally scaling the DBSCAN algorithm. This feature enables the algorithm to deal with 

multiple terminals (node) and distribute loads accordingly using RDDs. Another algorithm is 

involved that is called “NRDDDBSCAN” aiming to address the limitation in low dimensionality 

of “RDD-DBSCAN”. Furthermore, the Euclidean approach was also used in the literature to 

efficiently deal with the high dimensionality of data such as the works [15] and [16] that used 

“Message Passing Library Interface (MPI)” for parallel processing and Map Reduced 

techniques respectively.  

This paper is organized as follows: Section two describes the research method followed by the 

authors and the steps of the approach. Section 3 demonstrates the obtained results using the 

proposed approach as well as the benchmarking with other approaches in the literature. Also, 
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this section discusses the obtained results and highlights the main points. Section 4 concludes 

this work and suggests some recommendations to readers with potential future work. 

 

II. Research Method 

A. Concepts and Techniques 

The term “Internet of Things (IoT)” was first introduced as a group of objects that are connected 

and communicated using RFID technology [17]. The general architecture of the IoT comprises 

four layers according to [18] and [19] as follows: Perception Layer includes the hardware 

objects such as sensors, processors, actuators, and/or even smart devices. These objects are 

used for different purposes such as measuring a particular event within the environment, collect 

and generating data, or used for data transfer within the IoT network. Network Layer, involved 

in the connections and the communications among IoT objects (e.g., sending and receiving 

tasks). Service Layer is used for monitoring and managing IoT services for users and 

applications. Finally, the Interface Layer coordinates the communications among 

homogeneous and heterogeneous devices. According to these layers, developers should be 

aware of which layer they are dealing with during IoT applications development. 

On the other hand, as mentioned, a large-scale of data is generated by the IoT devices and this 

scale is increased over time. This leads to having issues related to the security of data, storage 

capacity, data analysis, privacy, etc. [20][21]. In the literature, a lot of tools have been 

developed and used to handle IoT data such as Map Reduce, Hadoop, and RDDs [22][23]. The 

performance of Map Reduce is affected when it is needed to have iterative operations on the 

data. This is because Map Reduce writes data on disk after each map, which makes it struggle 

the shuffling and reducing processes in terms of computation cost [24][25]. Addressing this 

issue can be performed using the resilient distributed datasets RDDs approach. It has many 

features such as being fault-tolerant, handle parallel operations, and does not need to store data 

in Hadoop Distributed Files System, which makes it faster. These features can be considered a 

powerful tool alternative to Map Reduce. Therefore, this work makes use of the RDDs to design 

NRDD-DBscan for efficiently detecting IoT data outliers. 

Furthermore, the DBSCAN algorithm can be horizontally scaled and the large-scale data is 

partitioned into many portions (chunks). Given that D is the whole data that is intended to be 

partitioned, then each portion is termed CH where CH1, CH2, …, CHn are all the portions and 

can be formulated as follows: 

𝐷 = 𝐶𝐻1  ∪ 𝐶𝐻2  ∪ … 𝐶𝐻𝑛     (1) 

Where n is the total number of chunks in D. All these chunks should be processed across multi 

nodes and each of which should apply the DBSCAN independently. The DBSCAN creates 

clusters based on the common features that are shared among the data points. Outliers data 

points are detected if and only if there are no shared features in common with other data points 

and can be formalized as follows: 

𝐶𝐻 = (𝑐1  ∪ 𝑐2  ∪ … 𝑐𝑚)  ∪ (𝑜1  ∪ 𝑜2  ∪ … 𝑜𝑙)     (2) 

Where CH denotes a particular chunk and the clusters are represented by c1, c2, …, cm, and the 

outliers are represented by o1, o2, …, ol. The m reflects the number of clusters that is not 
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necessary to equal to the number of outliers l. It should be mentioned that an outlier is not 

necessary to exist. Now, each cluster is represented as follows: 

𝑐 = 𝑥1  ∪ 𝑥2  ∪ … 𝑥𝑘      (3) 

Where c denotes a cluster and x1, x2, …., xk are the data points with a total number of k. The 

DBSCAN algorithm is based on two parameters: MinPts and . The former represents the 

minimum number of neighbors (points) that are needed to form a cluster. The latter represents 

the radius of the cluster. Moreover, the DBSCAN includes concepts that should be well-

understood before implementing it. For instance, “core point” is a point that belongs to c and 

has neighbors within its radius, “border point” is a point in c when but it is not a core, “directly 

reachable” is a point that is directly reachable by a core point and positioned in its neighbors, 

“density reachable” is a point that is directly reachable by a core point and indirectly reachable 

by another core point and these two core points are directly reachable to each other. 

One of the advantages of the DBSCAN is that it starts with unlabeled data points and its output 

is labeled data points. In addition, the detected outliers are flagged with a value of (-1). In this 

work, determining the neighbors of a particular point can be performed by calculating the 

distance among points. This step is done using the “Euclidean Distance Matrix (EDM)” [26].    

 

B. The Proposed Approach 

The proposed NRDD-DBSCAN aims to detect outliers with the support of RDDs. The 

proposed approach can be applied to n-dimensions and the implementation is performed using 

Apache Spark. Three phases are used in the proposed approach: 1) data allocation and 

reduction, 2) clustering and 3) aggregation. After performing these steps, outliers should be 

detected (if any). The proposed approach (NRDD-DBSCAN) is described in Algorithm 1: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Now, the three phases are described in detail as follows. 

 

Data Allocation and Reduction Phase 

Algorithm 1: Steps of the proposed approach. 

Goal: Outliers Detection in Data Points 

Input: A set of data points (x= x1, x2, …., xk) 

Output: A set of outlier points (o= o1, o2, …., ol) 

Steps: 

Step#1:  SET labeled_chunks TO  

Step#2:  Data Portions =Evenlychunks (X, Nodenumber, RowNumber) 

Step#3:  FOREACH chunk in Data Portions DO  

Step#4:   pn =DBSCAN (chunk, , MinPts) 

Step#5:   labeled_chunks = labeled_chunks  pn  

Step#6:  ENDFOR 

Step#7:  AggregatedChunks = aggregation (labeled_chunks, , MinPts) 

Step#8:  RenamedPoints = renaming (AggregatedChunks) 

Step#9:  Outliers = all the (-1) in RenamedPoints 



European Journal of Interdisciplinary Research and Development 
Volume-08                                           Oct. - 2022 
Website: www.ejird.journalspark.org                  ISSN (E): 2720-5746 

184 | P a g e  

Two steps are included in this phase, the first one is the data allocation process that needs the 

data point to be represented in two dimensions aiming to cluster them (see Figure 1). The main 

reason behind this representation is that NRDD-DBSCAN can efficiently partition the 2D data. 

Therefore, reducing the data is crucial and can be implemented using the “Principle Component 

Analysis (PCA)” algorithm [27][28]. PCA is one of the most efficient data reduction 

approaches that are widely used for this specific purpose. However, the classic approach of 

PCA cannot be implemented due to the high volume of data that consumes a large amount of 

memory that cannot be handled in regular computer systems [29]. The implementation, 

therefore, is performed using the PCA algorithm of “Apache Spark APIs” (pyspark) [22]. Then, 

the data allocation procedure starts to load the two-dimensional data and perform a splitting 

process that divides the data into many evenly-chunks. Here, it is worth mentioning that the 

number of portions should be compatible, in terms of size, with the available memory space. 

The reason behind this procedure is to avoid the RDDs to read from the secondary memory 

and makes the process slower, which is not sufficient for the proposed approach. Algorithm 2 

describes the details of the whole process. 

 
(#1) n-D converted into a 

2-D dataset using PCA 

 
(#2) PC1 is sorted in 

ascending order and 

divided using evenly 

chunks 

 
(#3) N chunks are 

assigned to N nodes. 

Figure 1: The processes of data allocation and data reduction. 
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Local Clustering Phase 

In the previous phase, a set of chunks is created where each of which includes unlabeled data 

points. The chunks are now ready to be assigned to nodes that, in turn, will use the DBSCAN 

independently. The output of applying the DBSCAN is labeled data points. These points are 

labeled as a border data point, core data point, or outlier data point. The first two types of points 

will be joined to the same or different clusters based on the number of features in common 

among the points. 

 

Data Aggregation and Renaming Phase 

The aggregation process takes the chunks as its input, which includes labeled data points of 

one of the three defined types (core, border, or outlier).  As mentioned, all the outliers are 

flagged with a value of (-1), while core and border points are flagged with their portion and 

chunk. For instance, if a data point is flagged with P1c0, it means that this data point belongs to 

portion 1 and chunk 0. The main issue in the aggregation process is when dealing with edge 

points. These kinds of points are positioned on the border of portions, which makes it a 

candidate to be an outlier point. Based on Figure 2, if the value of MinPts is 2 and the value of 

radius is 1, then the data point x_1 belongs to P1c1, but it also belongs to P2c0. Similarly, the 

data points x_6 and x_7 have almost seemed like outliers, but they belong to the same cluster 

of x_4 and x_5. Therefore, the aggregation process will process each portion and starts with 

portion 1 by obtaining its PC1 which is x_1 (the last point in portion 1). The position of x_1 is 

considered the startline of that portion. The startline of all the portions is used to detect the 

edges of these portions. The process starts with subtracting (“goBackOneEpsilon”) and adding 

(“goForwardOneEpsilon”) one epsilon from the startline points. After that, all the in-between 

points are able to share more than one cluster. Then, using the Euclidian Distance Matrix is 

Algorithm 2: The description of evenly chunks. 

Goal: Create N chunks to be distributed to N nodes within the network. 

Input: A set of unlabeled data points (x= x1, x2, …., xk) 

Output: A set of chunks (c= c1, c2, …., cl), each chunk contains data points that fit the node’s memory space. 

Steps: 

Step#1:  SET chunks TO  

Step#2: Reduce_Dimensionality = PCA (X,2) 

Step#3: Sorted_Data = AscendingSort(PC1)  

Step#4: #_of_Points_Per_Node = Ceiling (Sorted_Data.Length / Nodes_Number) 

Step#5: IF (#_of_Points_Per_Node > Rows_Number) THEN 

 Nodes_Number = Sorted_Data.Length / Rows_Number 

 CALCULATE #_of_Points_Per_Node 

 ENDIF 

Step#6: FORALL n in Nodes_Number DO 

c = Split_Points(Sorted_Data) 

Step#7: Chunks = Chunks  c 

Step#8:  RETURN Chunks 
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applied for each data point aiming to determine the neighbors. Here, when the number of 

neighbors is greater than or equal to the MinPts, four cases should be considered for each 

neighbor point as described in detail in Algorithm 3. After completing the aggregation process, 

each point in the data is assigned to a cluster (see Figure 3). The renaming process is performed 

after the aggregation and aims to rename the labels of the points. In other words, instead of 

using the notion PnCn, the renaming process makes it in the form of cn as described in Algorithm 

4. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
(#1) drawing startline for 

each chunk and expand it 

to be (+ and -) aiming to 

gather the edge points. 

 

(#2) When =1and 

MinPts=3, then exploring 

the edges that share more 

than one cluster for all the 

chunks. 

 
(#2) Obtain the output of 

labeled data points and these 

labels can be core, border, 

or outlier. 

Figure 3: Process steps of data aggregation in the proposed approach. 

 

 

Figure 2: The process of data aggregation. 
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Algorithm 3: The process of data aggregation. 

Goal: Aggregating data points. 

Input: A set of labeled data points (P= P1, P2, …., Pn), the radius , and MinPts 

Output: A set of points (Y= y1, y2, …., yl) where y is labeled points with flags of border, core, and outlier. 

Steps: 

Step#1:  FOREACH PART in (P) – Last portion DO 

Step#2: Startline = LastElement(PART) 

Step#3: goBackOneEpsilon = startline -  

Step#4: goForwardOneEpsilon = startline +  

Step#5: borderPoints = GetPoints between (goBackOneEpsilon, goForwardOneEpsilon)   

Step#6: FOREACH P in borderPoints DO 

        neighbors=GetNeighbors(P,) 

        IF neighbors.length >= MinPts THEN 

             FOREACH neighborPoints in neighbors DO 

  IF portion(neighborPoint) !==portion(P) OR (cluster(neighborPoint)==(-1) & cluster(P) ==(-1)) THEN 

  IF cluster(P) ==(-1) & cluster(neighborPoint) !==(-1) THEN 

   Cluster(P)=cluster(neighborPoint) 

   portion(P)=portion(neighborPoint) 

  ELSE 

   IF Cluster(neighborPoint)==(-1) & cluster(P)!==(-1) THEN 

    Cluster(neighborPoint)=cluster(P) 

    Portion(neighborPoint)=portion(P) 

   ELSE 

    IF cluster(neighborPoint) ==(-1) & cluster(P) ==(-1) THEN 

     NEW_CLUSTER=CreateNewClusterID() 

NEW_PORTION=CreateNewPortion() 

     Cluster(P)= NEW_CLUSTER 

     portion(P)= NEW_PORTION 

     cluster(neighborPoint)=cluster(P) 

     portion(neighborPoint)=portion(P) 

    ELSE 

     Points_neighbor_cluster=GetPointsOF(cluster(neighborPoint), 

portion(neighborPoint)) 

     FOREACH P in (PonitsOfNeigborCluster) DO 

      Cluster(P)=cluster(neighborPoint) 

      Portion(P)=portion(neighborPoint) 

     ENDFOR 

    ENDIF 

   ENDIF 

          ENDIF 

                  ENDFOR 

            ENDIF 

ENDFOR 

Step#7: aggregatePoints=P1P2……Pn 

Step#8: RETURN aggregatePoints 



European Journal of Interdisciplinary Research and Development 
Volume-08                                           Oct. - 2022 
Website: www.ejird.journalspark.org                  ISSN (E): 2720-5746 

188 | P a g e  

 

III. Results and Discussions 

A. Datasets Used 

The proposed NRDD-DBSCAN was implemented using “Apache Spark” which simulated the 

RDDs using Python programming language (pyspark API) [22]. The evaluation of the proposed 

approach was based on performing three main experiments as follows: 

- Experiment_1: it was performed using a dataset (“non-synthetic”) [30] of four attributes 

and 434,874 instances. 

- Experiment_2: it was performed using a dataset (“synthetic”) of one-million records, 

three centers, and two features. 

- Experiment_3: it was performed using a dataset (“synthetic”) of one-million records, 

three centers, and twenty-five features 

The use of two synthetic datasets in the experiments enabled to measure the performance of 

the proposed approach. It should be mentioned that the two datasets were created using the 

“make_blobs method of scikit-learn’s samples” [31]. The evaluation measurements used in this 

work are “Adjusted Rand Index (ARI)”, “Adjusted Mutual Information (AMI)”, “Homogeneity 

(Ho)”, “Completeness (Co)”, and “V-measure (Vm)”. Using these measurements needed to 

know “label_true” as ground truth labels [32]. 

 

B. Experimental Results 

Experiment_1: In this experiment, a sample of 100 instances was used with parameters values 

of =1 and MinPts=3. Also, “labels_true” and “labels_pred” were used, where the former was 

the “ground truth” of the samples as presented in [33]. The latter represented the results of the 

proposed approach. Practically, the DBSCAN is applied after excluding the “OSM_ID” 

column. After that, the columns of “LONGITUDE”, “LATITUDE”, and “ATTITUDE” were 

normalized and scaled aiming to address the n-dimensionality issue. The findings revealed four 

Algorithm 4: The process of renaming data points. 

Goal: Renaming the aggregated data points  

Input: A set of labeled data points (X= x1, x2, …., xk) 

Output: A set of points (X= x1, x2, …., xk), where core and border points are renamed as cn (Cluster_ID) and ourliers as (-1). 

Steps: 

Step#1: #OfPortions=max(portion(x)) 

Step#2:  #OfClusters=max(cluster(x)) 

Step#3: NEW_CLUSTER=uniqueValue 

Step#4: FOREACH portion in range(1, #OfPortions) DO 

 FOREACH Cluster_ID in range(0, #OfClusters) DO 

  filteredPoints=filteredPointsBy(x, cluster_ID, Portion_ID) 

IF (filteredPoints.length > 0) THEN 

  Cluster(filteredPoints)= NEW_CLUSTER 

  NEW_CLUSTER=New_uniqueValue 

ENDIF 

 ENDFOR 

              ENDFOR 

Step#5: REUREN x  
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clusters (c0, c1, c2, and c3), while the outliers were defined as (-1) labels as well as the cluster 

column reflected the values of “labels_ true”. Now, to compute the “labels_pred” defined by 

NRDD-DBSCAN, the simulation environment was prepared as a cluster of two “Virtual 

Machines (VM)” of Linux. Where each VM has two processors and the main memory of 4096 

MB and secondary storage of 20 GB. Based on the obtained results, the points were clustered 

into four clusters (100, 200, 300, and 400) and (-1) for the outliers, and the cluster column was 

the values of “labels_pred”. The results of the measurements described in the previous section 

were as follows: 

 

Table 1: The results of the evaluation measurements in Experiments_1 for a 3-D dataset. 

ARI AMI Ho Co Vm 

1.0 1.0 1.0 1.0 1.0 

 

These results proved that the results obtained from DBSCAN and the proposed are similar in 

the case of a 3-D dataset. 

 

Experiment_2: The second experiment used synthetic datasets and a sample of 1000 instances, 

the values of the parameters were; =0.5 and MinPts 3. The values of “labels_pred” were the 

results of NRDD-DBSCAN. Interestingly, similar results of Experiment_1 were obtained in 

terms of the measurements used (see table 2). This proved that both results of “DBSCAN” and 

the scaled one were in agreement in the case of 2-D datasets. 

 

Table 2: The results of the evaluation measurements in Experiments_2 for a 2-D dataset. 

ARI AMI Ho Co Vm 

1.0 1.0 1.0 1.0 1.0 

 

Experiment_3: The third experiment was performed on 25 features synthetic dataset. A 

sample of 1000 instances were considered in this experiment and the parameters were =0.5 

and MinPts 3. The “labels_true” was the ground truth class and computed using the 

“make_blobs method of scikit-learn’s samples” generator utility [31]. The “labels_pred” was 

the results of NRDD-DBSCAN, which represented the estimated number of clusters which was 

3. Table 3 presents the results of Experiment_3 I term of the measurements used.  

 

Table 3: The results of the evaluation measurements in Experiments_3 for a 25-D dataset. 

ARI AMI Ho Co Vm 

0.996 0.985 1.0 0.985 0.992 

 

Based on Tables 1, 2, and 3, a comparison was performed for the performance of the three 

experiments. It can be observed that both RDD-DBSCAN and NRDD-DBSCAN with 2-D 
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datasets provided similar results to the original version of the DBSCAN. However, the RDD-

DBSCAN struggled to deal with high-dimensional datasets. On the other hand, the NRDD-

DBSCAN has the ability to deal with high dimensional datasets and produce efficient results 

as observed in this work when dealing with 3-D and 25-D datasets. 

 

IV. Conclusions 

This work suggested an approach for two main purposes, namely, addressing the issue of low 

dimensional datasets and outlier detection. The proposed NRDD-DBSCAN approach was 

examined using three experiments. These experiments were also utilized to evaluate the 

performance of the proposed approach against other approaches in the literature. The NRDD-

DBSCAN used 2-D, 3-D, and 25-D datasets. The 2-D and 3-D datasets reflected identical 

results for both NRDD-DBSCAN and its original version (DBSCAN). On the other hand, the 

25-D dataset, in the experiments, was successfully implemented by the proposed approach. As 

mentioned, this work aimed to detect noisy and outlier data points that impact the quality of 

data exchanged in the IoT. The suggested approach was modeled to efficiently deal with high-

dimensional datasets. The results of the proposed approach are promising and can be adopted 

by IoT developers and maintain data quality. However, this work has a main drawback, which 

is the use of PCA for dimensionality reduction that makes the proposed approach struggle 

dealing with nonlinear data. Therefore, as future work, there is an important area of 

improvement in this work, which is developing the approach to be able to handle nonlinear and 

highly correlated n-dimensional data. 
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