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Introduction 
Let A be a finite JBW algebra,  be an exact normal finite trace on A. Let m be a subadditive measure on A . From the results [2-3] it 

follows that m can be represented as ( ) ( ( ))m x x  . Let N be the space of normal functionals on A. 

 Lemma 1. Set  

1

{ : }
n

S g N nm g nm на




       

is dense in the Banach space N , where g nm  on means that ( ) ( )g e nm e for any e . 

 Proof . If S is not dense in N , then there exists a continuous linear functional x0 on N such that 0 0x  . 0( ) 0g x   

for everyone g S . Since it is 0( ) 0g x  equivalent to the equality 0( ( )) 0g r x  , where 0( )r x is the support of 

the element x0, it suffices to prove that 0( ) 0r x  . It is easy to see that m  on  . The functional ( ) ( )e x ex 

also belongs to the set S . By assumption 0( ( )) 0g r x  , for any g S and in particular 0( ( )) 0,e r x e   

. Letting 0( )e r x we have that 0( ( )) 0r x  . Due to accuracy, we   conclude that  0( ) 0.r x  This means that 

0 0x  . Therefore, 0 0x  . The lemma is proven. 

 Let A - JBW - algebra,  be the set of idempotents of A. m is a finite subadditive measure on A , t is the topology of 

convergence in measure m . 

 Theorem 1. If the sequence of elements{ }nx  A        t – с tends to zero and is bounded on the norm 

(|| || 1, 1,2,....)nx n  , then it        - weakly converges to zero in A .              Proof. Let 
t

nx x  i.e. for 

any , 0   there is a number n0 such that ( , )nx N    for 0n n . This means that there is a sequence 

{ }ne  such that 0( ) , || || ,n e nm e U x n n     . 

It needs to be shown that 0x    - weakly, i.e. ( ) 0ng x   for any normal state g N . Let first g S , i.e.

0( ) ( )n ng e k m e   for some natural k0 . We have:  

   ,1 1( ) 2 ( )
n n n nn e n e e n e ng x g U x g U x U x     
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and    | | || || (1)
n ne n e ng U x U x g   . Let us estimate the second term. Because 

,1 2(1 )( )
n ne e n n n nU x e e x   , then due to the Schwartz inequality 

2

,1| ( ) | 2 ( ) (( ) )
n ne e n n ng U x g e g e x

    

2

0 02 ( ) || || 2 ( ) || || 2n n ng e e x k m e x k     . 

Taking into account the equality 
1 (1 )( 2 )

ne n n n n nU x e x e x    , it similarly turns out that 

1 0| ( ) | 3
ne ng U x k   . By virtue of arbitrariness , ,   this implies that ( ) 0ng x  . 

 Let now f N be an arbitrary normal state. By Lemma 1 , for any 0  there exists g S such that 

|| ||f g   . Then if 0( ) ( )g e k m e , then for 0n n we have: 

0| ( ) | | ( )( ) | | ( ) | || || || || | ( ) | 7n n n n nf x f g x f x f g x g x k           , i.e. 

| ( ) | 0nf x  . So, it 0nx  - weakly. The theorem has been proven. 

Theorem 2 . The algebra A  is a universal OJ - algebra, the set of bounded elements of which coincides with A  Proof. In terms 

of continuity in the topology t of the operation of multiplication in A , the set of 


A all squares of elements from A  is the t - 

closure of the cone 
2{ , }a a  A A  JBW are algebras A . The cone 


A defines a A  partial order, which obviously 

satisfies axioms 1), 2), 4) of the definition of a partial order and induces the initial partial order on A. 

The proof of the second part of the theorem (i.e., the set of bounded elements of A  which coincides with A ) is carried out similarly 
to the proof of the theorem from [1]. 

 Let be 0A an arbitrary maximal strongly associative subalgebra A . Due to t being the continuity of multiplication in A

, subalgebra 0A closed. Let 0{ , 0}K a a  A . The set of elements of the form 
1(1 ) ,x x K  , is 

contained, as noted earlier, in A . Since all are 0xA compatible, then by Lemma 1.3.2 from [1] the family is 

1{(1 ) , }x x K  compatible. Let A0 be a maximal strongly associative subalgebra A containing this family. By virtue of the 

corollary of Theorem 1.2.2 . in [1],  A0  is a topological semifield. If 0A the closure А0  in A , then due to completeness A , oA is a 

complete topological semifield and hence a universal semifield . Obviously, it is 0A strongly associative in A . Let's show that 

0 0A  A . Since oA , it suffices to check that 0 0AA . 

 Let x K , then 
1

0(1 )x  A by definition А0 . The carrier ( )r z  of the element 
1(1 )z x   is equal to 

one. Indeed, 

     
2 (1 ( )) (1 ( )) 0zz r z U r z    ; 
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applying the operator to this equality 
1

1 x zU U 

  , we obtain 1 ( )r z   , i.e. ( ) 1r z  . Since in the universal 

semifield every element with support equal to one is invertible, then in the semifield 0A  exists 
1z . Due to the uniqueness of the 

inverse element in the Jordan algebra. 

1

0(1 )x z A   , i.e. 0x A , i.e. 0K A . 

For any 0x A  we have 

2 2

0

1
(1 ) 1

2
x x x K K K A        those. 0 0A A . 

 Thus, we have proved that every maximal strongly associative subalgebra A is a universal semifield . In particular, axioms 

3) and (II) OJ are algebras for A . 

 It remains only to verify the fulfillment of the axiom (I). Let be { }x an increasing network of elements bounded from 

above in A . We can assume that x x   for all . There is 
1(1 )a x   A . By virtue of the positivity of the 

operator aU  in A  and, therefore, in A , the network is { }a aU x increasing and bounded from above by the element 

2(1 ) 1aU x x x   . Therefore, { }a aU x  A and therefore in A exists sup a ab U x . Then, obviously, the 

element 
1

0 1a xx U b U b

  is the least upper bound for { }ax . 

 Let us show that 0ax x in the topology t . Since a aU x b in JBW- algebra A and for monotone networks in JBW 

- algebras, the concepts of ordinal,  - weak and strong convergence coincide, then a aU x b strongly, i.e.

2(( ) ) 0a aU x b    for any normal state  . In particular, 
2(( ) ) 0a aU x b   for any 1, 0    there 

exists a0  such that 
2 2

1(( ) )a aU x b     for  0a a . From here, as in the proof of Theorem 1.8.3, it follows that 

( ) ( , )a aU x b N    , with respect to the subadditive measure, i.e., a aU x b  in the topology  t. Since 

multiplication in the Jordan algebra A  is continuous in the topology  t, then 

    1 1 0

t

a x a a xx U U x U b x     

If now yA  and  ay x  for any a , then, due to the continuity of multiplication in A  and the fact that 0

t

ax x

, it follows that 0y x , which proves the fulfillment of the A  axioms (I)  OJ - algebras. The theorem has been proven. 

 It follows from this theorem that in the case of finite JBW-algebras                  OJ- algebras of measurable elements constructed 
from the trace [1] and from finite subadditive measures coincide. 
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