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ABSTRACT 

The space technology made it feasible to launch and operate man-made satellites for the purpose of 

studying the Earth's dimensions and shape from orbit or to examine them as targets from the surface 

of the world. 

The Earth's gravitational field is not perfectly rigid; rather, its values alter slightly according to where 

you are on the planet. Its non-spherical shape and internal fluctuations in density are the cause. 

Geoid is the name for the geometric body that represents the associated asymmetric gravity field in 

each of the directions. The largest deviation from the sphere is caused by the rotation of the Earth, 

which displaces the masses to the equator due to the centrifugal forces. The orbit of a spacecraft 

circling the Earth is influenced by these gravitational anisotropies, leading to slightly deformed 

Keplerian orbits. the variations of the orbital elements are highly Complicated The variations are 

governed by the oblateness variations with different harmonics factor (n = 2,4,10,30,50) which 

known as Zonal harmonics are defined by zeroth order (m = 0), where the dependence of the potential 

on longitude vanishes and the field is symmetrical about the polar axis. 

The sensitivity of the satellites orbits is studied the of the gravity field models. the solution one set 

of six initial osculating orbital parameters is estimated together with the parameters in radial, along-

track and out-of-plane directions. 

The empirical orbit parameters estimated using different terms gravity coefficients (zonal) do not 

show significant differences in the Keplerian orbits components for short period analysis. The only 

noticeable differences are seen in the long period The magnitude of these effects is usually larger 

than the short-periodic variations from the zonal harmonics. 

the orbital elements vary periodically and significantly over each orbit In closing we note that if the 

argument of perjee would not rotate by gravitational perturbations but would remain constant, then 

all orbital elements would grow unlimited. So, by and large it can be stated that the rotation of ω, 

primarily owing to Earth’s oblateness perturbations, has a stabilizing influence on orbits. 

 

Keywords: Earth's Oblateness, Perturbations, Orbital elements, Zonal harmonic, gravitational 

potential. 
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Introduction 

A perturbation is a deviation from some normal or expected motion. [1,2] the gravitational forces of 

other celestial bodies, in particular neighboring planets, or interactions with the space environment 

will perturb the Keplerian orbit around the central body. 

In total there exist the following major disturbing forces: 

• gravitational forces resulting from the non-spherical geometry and mass distribution of the 

central body 

• gravitational forces of other celestial bodies (such as the Sun, Moon, planets) 

• acceleration force resulting from the solar radiation pressure 

• acceleration force resulting from the drag of the remaining atmosphere. [3] 

best way to describe the Earth's external field, the numerical issues that come up when determining 

the field from artificial satellite motions that have been observed, and the problem of carefully 

comparing the field that is derived from these motions with that which is observed on the Earth 

surface. These problems may not have an impact on the main findings from observations of artificial 

satellites, such as our understanding of the Earth's flattening, but the increased accuracy in these 

observations demonstrates the need to take into account the finer points of theory and numerical 

calculations. Perhaps this is especially significant when studying the mechanics of the Earth's. [4] 

When the orbit of the satellite is low Earth orbit (LEO), the perturbation due to oblateness of Earth 

and atmospheric drag plays very important role. Various analytic, semi-analytic and numerical 

techniques are adopted for solving perturbed equations of motion. King-Hele (1958) solved the 

equations of the motion of a satellite analytically by considering oblateness of Earth. (Stiefel and 

Scheifele (1972) They solved the equations of motion by applying KS transformations. The motion 

of satellite in the terrestrial upper atmosphere was studied by Sehnal (1980). The analytic solution of 

motion of satellite by considering combined effect of Earth’s gravity and air drag was found by 

Delhaise (1991) using Lie transformations. The dynamics of satellite motion around the oblate Earth 

using rotating frame were developed by Yan and Kapila (2001). The Hamilton equations for the 

motion of satellite under the Earth’s oblateness and atmospheric drag were derived and solved using 

canonical transformation by Khalil (2002). Hassan et. al. (2008) tried to find a solution of equations 

governing motion of artificial satellites under the effect of an oblateness of Earth by using KS 

variables. Al-Bermani et. al. (2012) investigated the effect of atmospheric drag and zonal harmonic 

J2 for the near-Earth orbit satellite namely Cosmos1484[5]. Ahmed K. Izzet et. investigated Moon 

and Sun perturbations Effects on The Orbital Elements of Earth Satellites Orbits [6]. The earth 

potential disturb on low-earth orbit satellites for both prograde and retrograde orbits determinned by 

ahmed k. izzet et [7] the study demonstrate that the inclination of the satellites affects how the earth's 

potential disturbance affects the orbital elements of low earth orbiting satellites, and that the effects 

of perturbations on prograde orbits are opposite to those caused on retrograde orbits .The Kepler 

problem treats the earth as if it is a spherical body of uniform density. In actuality, the earth's shape 

deviates from a sphere in terms of latitude (described by zonal harmonics), longitude (sectorial 

harmonics), and combinations of both latitude and longitude (tesseral harmonics) [8]. 

This paper aims to analyze how the gravitational potential, which can be represented by a set of 

spherical harmonic functions, affects earth satellites orbiting around a non-spherical Earth. It is 
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preferable to first identify these impacts by looking for variations in six orbital elements and then 

examining changes in the satellites' geometrical (kinetic) positions. 

1. Earth Gravity Field Model 

The theoretical basis for establishing the geodetic datum is provided by the theory of the Earth's 
gravity field, or the theory of the Earth's form. The geoid is the name for the Earth's physical form. 
A normal ellipsoid represents the Earth's physical and mathematical shapes, while a reference 
ellipsoid represents the Earth's mathematical shape. The reference ellipsoid, also referred to as 
the normal ellipsoid, is a close approximation of the geoid. Therefore, in geodesy, the shape of the 
geoid serves as the primary point of reference for the shape of the Earth. The height of a particular 
location on Earth's surface can also be determined using the geoid as a reference surface.  
Since the geoid is the level (equipotential) surface of the Earth’s gravity field, processing of leveling 
data should take into account the properties of the theory of the Earth’s gravity field. This section 
deals with the basic concepts of the theory of the Earth’s gravity field [9] 

The Earth can be regarded as a body constituted by infinite number of continuous point masses. 
The attraction that the Earth has exerted on the unit point mass 𝐹 is the integral: 
 

 
�⃗� = −𝐺 ∫

1

𝑟2

 

𝐸𝑎𝑟𝑡ℎ

 
𝑟

𝑟
 𝑑𝑚 

 
(1) 

 
 

where 𝑑𝑚 is the differential mass element of the Earth and r represents the position vector 
between 𝑑𝑚 and the attracted mass, which is a variable of integration; the integral area is the total 
mass of the Earth. The direction of the gravitational attraction is toward the center of the Earth. 
Due to the rotation of the Earth, every point on the Earth experiences an inertial centrifugal force 
P The force of gravity of the Earth G is the resultant of the gravitational force acting upon a unit 
point mass and the centrifugal force of the Earth. 
in geodesy, the concepts of gravity force and gravity acceleration are always used interchangeably. 
For any conservative gravity vector, there exists a so-called potential function such that the 
gradient of the function is the gravity vector. The function of gravitational potential is a numeric 
function with respect to the variables of coordinate axes 𝑋, 𝑌, 𝑎𝑛𝑑 𝑍. 
It can be proved that the gravitational potential of a body at an exterior point, given by [9]: 
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  where 𝑑𝑚 denotes the differential mass element at the point (𝜉, η, ζ); it is a variable of an integral 

(see fig 1) 
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  is the distance from 𝑑𝑚 to the attracted mass and the total mass of the integral area is M 
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Fig (1) Gravitational potential of the body with mass M [9] 
the harmonic function in the spherical coordinates, which can be represented as [10,11] : 
 
 

 𝑉(𝜌 , 𝜃 , 𝜆 ) = ∑
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Equation is a series expansion, which indicates that the Earth’s gravitational potential at an exterior 

point can be described by an infinite series. (ρ, θ, λ) are the spherical coordinates of the exterior 

point of the Earth and 𝑎𝑛𝑚 and 𝑏𝑛𝑚 are the coefficients of the Earth’s gravity field, Coefficients 𝑎𝑛𝑚 

and 𝑏𝑛𝑚are related to the mass distribution and shape of the Earth [12]: which can be determined 

by the observed values. Therefore, the gravitational potential problem can be regarded as the 

problem of study of the coefficient of the gravitational potential. 𝑃𝑛𝑚 (cos 𝜃) represents the 

associated Legendre polynomials (also known as the associated Legendre functions of the first 

kind), n is degree, and m is order [9]. 

In practice, the spherical harmonics expansion of the gravitational potential of the Earth is written 
as 
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where 𝑎 denotes the semi major axis of the Earth  ellipsoid and 𝑃𝑛𝑚(cos 𝜃)  is the  fully 
normalized associated 
Legendre polynomials, which differ from the associated Legendre polynomials only by a constant 
factor 𝐽𝑛 , 𝐽𝑛𝑚 , 𝑆𝑛𝑚 are the normalized coefficients Adopting this set of coefficients, the differences 

between the values of the polynomials changing along with 𝑛 and 𝑚 (degree and order) are slight, 
making it convenient to use. The coefficient that is independent of longitude in(5) is called the 
coefficient of zonal harmonics, while the coefficient that is longitude dependent is called the 
coefficient of tesseral harmonics 
 

2. Perturbations 

Deviations from an idealized, standard, or undisturbed motion are called perturbations. We generally 

think of the universe as being very predictable and regular. Due to perturbations from other bodies 

(like the Sun and Moon) and extra forces (such as a nonspherical central body and drag) that are not 

taken into account in Keplerian motion, the actual motion will differ from the ideal two-body route. 

Observe that we refer to the central body to demonstrate that these perturbation techniques are 
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applicable to any central body. [6]. 

It is implied by the term perturbed motion that there is an unperturbed motion. The orbital motion 
of two spherically symmetric bodies, as represented by the equations of motion, is the definition 
of unperturbed motion in celestial mechanics. [1]. 

 �̈� = −𝑘2(𝑚0 + 𝑚)
𝑟

𝑟3
≝ −𝜇

𝑟

𝑟3
   

 
(6) 

where µ = 𝑘2(𝑚0 + 𝑚). We follow the procedure which led to the conservation law of total 
angular momentum in the N-body problem by multiplying eqn. (1) by the vector operator r× and 
obtain 

 
𝑟 × �̈� = −𝜇

𝑟 × 𝑟

𝑟3
≝ 0   ,    

 

 
(7) 

the solution of which is known in terms of simple analytical functions. The constant µ is the 
product of the constant of gravitation and the sum of the masses of the two bodies considered. 
The numerical value of µ thus depends on the concrete problem and on the system of units chosen. 
The perturbed motion of a celestial body is defined as the solution of an initial value problem of 
the following  type .The perturbation term 𝛿𝑓 may be rather arbitrary. The resulting equations 

usually are referred to as the Gaussian perturbation equations 
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For a system of point masses there is one such equation for each of the bodies, except for the 
central body to which 

the position vectors refer. The 

term −𝜇 𝑟
 

𝑟 

in eqn. (8) is called the two-body term, 𝛿𝑓 the 
perturbation term. The 

terminology makes sense if the perturbation term is considerably smaller than the two-body term. 
The perturbation term 𝛿𝑓 may be rather arbitrary. The resulting equations usually are referred to as 

the Gaussian perturbation equations 

 |𝛿𝑓| ≪ |−𝜇
𝑟

𝑟3
| 

 
(10) 

 
The differential equation system (8) is called the system of perturbation equations or simply the 
perturbation equations. Every method solving the initial value problem (8, 9) is a called a 
perturbation method. 
For general perturbation methods it is mandatory not to use the original equations of motion in 
rectangular coordinates, but to derive differential equations for the osculating orbital elements or 
for functions thereof. This procedure promises to make the best possible use of the (analytically 
known) solution of the two-body problem (6), because the osculating elements are so-called first 
integrals of the two-body motion 
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Special perturbation methods may be applied directly to the initial value problem (8, 9) or to the 
transformed equations for the osculating elements [13]. 
The orbital elements are no longer constant in the perturbative case; instead, they change with time. 
Assume for the moment that we are aware of the orbital elements that, at a specific time (t), 
represent the Keplerian orbit, which, in general, describes the particle's motion.To solve the 
perturbed problem there exist various methods, which are usually divided in two main classes: 
♦ special perturbation methods, which integrate numerically a given problem with given initial conditions and 
therefore aim at obtaining specific solutions holding methods of numerical integration. 

♦ general perturbation methods, aiming to provide approximate analytical solutions, no matter on the initial 

conditions. [13]. 
Moreover, as we will, the orbital perturbations can be classified in 
□ secular : the orbital element affected by the perturbation varies linearly with time (or according to some 
power of time); 

□ long-period: the effects due to the perturbation repeat with a period which is at least 1 order of magnitude 
larger than the orbital period; 

□ short-period: the effects due to the perturbation repeat after few or less orbital periods[6]. 

 
 

 
Figure (2) perturbations of the of the Keplerian element ai(t) [14] [15] 
As the earth is not actually completely spherical, its gravitational potential is not constant for the 

same altitude. It depends on the region under consideration. The first step in modeling the 

perturbation is to obtain the analytical function of the potential energy created by a body of 

generic shape. Later, with the gravitational potential we can 

obtain the acceleration by making �⃗� = 𝜕𝑈⃗⃗⃗⃗⃗⃗ 𝜕𝑟⃗⃗⃗⃗⃗⁄  

and thus be able to model said force. Equation (11) shows the gravitational potential created by a 

body of generic shape: 
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Equation (11) is made up of the subtraction of two terms. The first term is 
𝜇

𝑟
  and corresponds to 

the gravitational potential created by a sphere, that is, the spherical gravitational potential. The 
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other is the sum of the spherical harmonics, which are corrections to the spherical model that 

allow characterizing the generic model [16] 
The mathematical expression of this polynomial in equation (11) is given by the following [16]: 

 𝑃𝑛,𝑚(𝓍) =
−1𝑚

2𝑛. 𝑛!
 (1 − 𝓍2)𝑚 2⁄
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(12) 

 

For m = 0, Legendre’s associated polynomial takes the form of Legendre’s polynomial: 

 𝑃𝑛(𝓍) =
1

2𝑛. 𝑛!
 

𝑑𝑛

𝑑𝓍𝑛
 (𝓍2 − 1)𝑛 

 
(13) 

 
Depending on the combination of n and m, we distinguish between three harmonics: zonal (m = 0), 
sectorial (n = m) 
and tesseral (n ≠ m≠ 0). The zonal harmonics depend only on latitude. The sectorial harmonics 
depend both on latitude and longitude, though their sign is only dependent on longitude. The 
tesseral harmonics take values and signs that change regularly with respect to latitude and 
longitude, forming a chessboard-style pattern. Its graphical interpretation is illustrated in figure 
(2)[16]. 
 

 

 

 

 

 

 
 

 

 

 

 

 

Figure(3)spherical harmonics (zonal, sectorial, and tesseral harmonics of the Earth) [17] 

spherical harmonics, for they are periodic on the surface of a unit sphere. These spherical 
harmonics can be classified in three groups: 
♦ Zonal Harmonics: They are defined by zeroth order (m = 0). This implies that the dependence of the potential on 
longitude (λ) vanishes and the field is symmetrical about the polar axis, appearing n+1 horizontal zones dividing Earth. 
J2 is, by far, the strongest perturbation due to Earth’s shape. [18]. 

♦ Sectorial Harmonics: They occur when the degree is equal to the order of the harmonic (n = m). When this happens, 
the polynomials are zero at the poles and Earth is divided into 2n meridians sectors.[18]. 

♦ Tesseral Harmonics: For cases in which n≠ m≠0, the tesseral harmonics attempt to model specific regions of Earth 
that depart from a perfect sphere [18]. 
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3. Results and Discussion: 

In this paper we try to analysis the effect of non-spherical earth on earth satellites by the gravitational 

potential which can be expressed in terms of a series of spherical harmonic functions. These 

spherical harmonics are used to describe the variation of the actual, pear-shaped earth from the 

spherically symmetric earth of the two-body problem. The indices n and m are used to differentiate 

between zonal harmonics (m = 0), sectorial harmonics (n = m, m ≠ 0), and tesseral harmonics (n ≠ 

m, m ≠ 0). 

The specific perturbative effects of zonal will be discussed in the following for different values of 

degree. 

however, it is first desirable to determine these effects by detecting the variation in six orbital 

elements and the by analyze the changes in the geometrical (kinetics) position of the satellites the 

results based on spherical harmonic degree coefficient’s (2,4,10,30 and 50), the zonal harmonics 

describe how the actual shape of the earth deviates from the symmetrical Kepler earth in terms of 

latitude, the density of the earth at one particular line of latitude may be different (either higher or 

lower) than at another line of latitude therefor the physical effects which arise due to the zonal 

harmonics are very important when taking a ground track of satellites. 

Using the program SATORB [13] the orbit of a test satellite is integrated over a relatively small-

time interval of one day and over a long period of a month and six month in an attempt to fix the 

order of magnitude of the perturbations experienced by a typical satellite. Table (1) provides 

information on the test satellite's initial osculating orbital components. 
 

Table (1) osculating orbital elements 
A (km) e I(deg) Ω (deg) Ω (deg) 

7822 0.0006464 40 112.2 0 

 

The initial epoch is (1 Jan 2012). The (unperturbed) revolution period is approximately (114.75) min. 

The mean oblateness perturbations are compared in Figures 4 through 17 to the mean perturbations 

obtained from an integration with the same beginning conditions (n = 2, m = 0), but with the Earth's 

gravitational potential up to different terms of degrees and set the order equal to 0. The osculating 

orbital elements extracted after the integration are given as a function of Modified Julian Date over 

the interval of the one day. 

In general, as can be seen from the figures, that dominant effect on the (semi major axes, 

eccentricity, and inclination) elements is periodic, while we notice that secular variation beside the 

short periodic changes in the other remaining three elements. Secular perturbations in the longitude 

of ascending node, the argument of perigee, and the mean anomaly, these secular variations are the 

principal long-term effects of the non-spherical earth perturbation. The bulge at the equator produces 

a torque which tends to turn the satellite's orbit plane towards the equator; the satellite for the a 

spherical earth will cross the equator short of the crossing point for the unperturbed, two-body 

satellite, these phenomena, which is referred to as the regression of the node. 

Secular perturbations in the longitude of ascending node, the argument of perigee, and the mean 

anomaly, these secular variations are the principal long-term effects of the non-spherical earth 
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perturbation. The bulge at the equator produces a torque which tends to turn the satellite's orbit 

plane towards the equator; the satellite for the a spherical earth will 

 

cross the equator short of the crossing point for the unperturbed, two-body satellite, these 

phenomena, which is referred to as the regression of the node. 

Figures (8 – 11) show that the gravitational potential term degree for period one month, changes 

exclusively the three elements: eccentricity, perigee argument, and mean anomaly. This is also 

accurate for intervals six months as shown in figures (12–15). This alteration remains unchanged 

when the term of degree is increased. 

Secular changes dominate the ascending node's right ascent and the perigee argument. The findings 

demonstrated that the effects of perturbations on orbital elements are consistent with those caused 

by varying gravitational perturbation coefficient values, which motivates us to investigate 

turbulence over longer intervals. 

The set of geocentric coordinates in the inertial system and the perturbing acceleration (in radial, 
along-track, and out-of-plane directions) are the variations with respect to the initial osculating 
Keplerian orbit can be measured in meters in the three directions shown in figure (16, 17). A 
secular variation coexists with the short periodic changes in along track direction, with the periodic 
effect having the most influence on the radial components. As we observe periodic expansion in 
the out-of-plane direction due to the influence of zonal harmonic coefficients. 
 

4. Conclusion: 
The results lead us to the conclusion that increasing the value of n for periods is directly proportional 

to time, Earth potential disturbance affects the orbital elements of LEO Satellites, the main effects 

on the orbit are the secular motions of the node and perigee. Periodic variations occur in all elements. 

The gravitational potential term degree for a one-month period is obtained from the data, and it just 

influences the eccentricity, perigee argument, and mean anomaly. This is also true for six-month 

durations. 
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Figure (4) Variation in orbital element of a satellite due to the oblate Earth Zonal harmonic degree 4 

(one day). 
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Figure (5) Variation in orbital element of a satellite due to the oblate Earth Zonal harmonic degree 10 (one day). 
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Figure (6) Variation in orbital element of a satellite due to the oblate Earth Zonal harmonic degree 30 (one day). 
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Figure (7) Variation in orbital element of a satellite due to the oblate Earth Zonal harmonic degree 50 (one 
day). 
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Figure (8) Variation in orbital element of a satellite due to the oblate Earth Zonal harmonic degree 4 

(one month). 
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Figure (9) Variation in orbital element of a satellite due to the oblate Earth Zonal harmonic degree 10 (one month). 
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Figure(10)Variation in orbital element of a satellite due to the oblate Earth Zonal harmonic degree 30 (one month). 
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Figure(11) Variation in orbital element of a satellite due to the oblate Earth Zonal harmonic degree 50 (one month). 
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Figure (12) Variation in orbital element of a satellite due to the oblate Earth Zonal harmonic degree 

4 (six month). 
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Figure (13) Variation in orbital element of a satellite due to the oblate Earth Zonal harmonic degree 10 (six month). 
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Figure (14) Variation in orbital element of a satellite due to the oblate Earth Zonal harmonic degree 30 (six month). 

 

 

 
 



 

115 | P a g e  
 

 

 

  
 

 

 
Figure (15) Variation in orbital element of a satellite due to the oblate Earth Zonal harmonic degree 50 (six month). 
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The differences w.r.t. the initial osculating Keplerian orbit 
(radial, along track, out of plane direction) 

The differences w.r.t. the initial osculating Keplerian 
orbit (radial, along track, out of plane direction) 

 

 

 

 
Figure (16) Variation in osculating Keplerian orbit due to the oblate Earth Zonal harmonic for (six month). 
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The differences w.r.t. the initial osculating 
Keplerian 

orbit (radial, along track ,out of plane direction) 

The differences w.r.t. the initial osculating 
Keplerian 

orbit (radial, along track, out of plane direction) 

 

 

 
Figure (17) Variation in osculating Keplerian orbit due to the oblate Earth Zonal harmonic for (six month). 
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